Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dental Examination and Saliva Collection
2.3. DNA Extraction and 16S rRNA Sequencing
2.4. Clustering Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thitasomakul, S.; Thearmontree, A.; Piwat, S.; Chankanka, O.; Pithpornchaiyakul, W.; Teanpaisan, R.; Madyusoh, S. A longitudinal study of early childhood caries in 9- to 18-month-old Thai infants. Community Dent. Oral. Epidemiol. 2006, 34, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Peltzer, K.; Mongkolchati, A. Severe early childhood caries and social determinants in three-year-old children from Northern Thailand: A birth cohort study. BMC Oral. Health 2015, 15, 108. [Google Scholar] [CrossRef] [Green Version]
- Simon-Soro, A.; Mira, A. Solving the etiology of dental caries. Trends Microbiol. 2015, 23, 76–82. [Google Scholar] [CrossRef]
- Kim Seow, W. Environmental, maternal, and child factors which contribute to early childhood caries: A unifying conceptual model. Int. J. Paediatr. Dent. 2012, 22, 157–168. [Google Scholar] [CrossRef]
- Xiao, J.; Alkhers, N.; Kopycka-Kedzierawski, D.T.; Billings, R.J.; Wu, T.T.; Castillo, D.A.; Rasubala, L.; Malmstrom, H.; Ren, Y.; Eliav, E. Prenatal Oral Health Care and Early Childhood Caries Prevention: A Systematic Review and Meta-Analysis. Caries Res. 2019, 53, 411–421. [Google Scholar] [CrossRef]
- Mafla, A.C.; Moran, L.S.; Bernabe, E. Maternal Oral Health and Early Childhood Caries amongst Low-Income Families. Community Dent. Health 2020, 37, 223–228. [Google Scholar] [CrossRef]
- Fisher-Owens, S.A.; Gansky, S.A.; Platt, L.J.; Weintraub, J.A.; Soobader, M.-J.; Bramlett, M.D.; Newacheck, P.W. Influences on children’s oral health: A conceptual model. Pediatrics 2007, 120, e510–e520. [Google Scholar] [CrossRef] [Green Version]
- Foxman, B.; Davis, E.; Neiswanger, K.; McNeil, D.; Shaffer, J.; Marazita, M.L. Maternal factors and risk of early childhood caries: A prospective cohort study. Community Dent. Oral Epidemiol. 2022. [Google Scholar] [CrossRef]
- Ha, D.H.; Nguyen, H.; Dao, A.; Golley, R.K.; Thomson, W.M.; Manton, D.J.; Leary, S.D.; A Scott, J.; Spencer, A.J.; Do, L.G. Group-based trajectories of maternal intake of sugar-sweetened beverage and offspring oral health from a prospective birth cohort study. J. Dent. 2022, 122, 104113. [Google Scholar] [CrossRef]
- Xiao, J.; Grier, A.; Faustoferri, R.; Alzoubi, S.; Gill, A.; Feng, C.; Liu, Y.; Quivey, R.; Kopycka-Kedzierawski, D.; Koo, H.; et al. Association between Oral Candida and Bacteriome in Children with Severe ECC. J. Dent. Res. 2018, 97, 1468–1476. [Google Scholar] [CrossRef]
- Pattanaporn, K.; Saraithong, P.; Khongkhunthian, S.; Aleksejuniene, J.; Laohapensang, P.; Chhun, N.; Chen, Z.; Li, Y. Mode of delivery, mutans streptococci colonization, and early childhood caries in three- to five-year-old Thai children. Community Dent. Oral Epidemiol. 2013, 41, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.T.; Xiao, J.; Manning, S.; Saraithong, P.; Pattanaporn, K.; Paster, B.J.; Chen, T.; Vasani, S.; Gilbert, C.; Zeng, Y.; et al. Multimodal Data Integration Reveals Mode of Delivery and Snack Consumption Outrank Salivary Microbiome in Association with Caries Outcome in Thai Children. Front. Cell Infect. Microbiol. 2022, 12, 881899. [Google Scholar] [CrossRef]
- World Health Organization. Oral Health Surveys: Basic Methods, 4th ed.; World Health Organization: Geneva, Switzerland, 1997. [Google Scholar]
- Drury, T.F.; Horowitz, A.M.; Ismail, A.I.; Maertens, M.P.; Rozier, R.G.; Selwitz, R.H. Diagnosing and reporting early childhood caries for research purposes. A report of a workshop sponsored by the National Institute of Dental and Craniofacial Research, the Health Resources and Services Administration, and the Health Care Financing Administration. J. Public Health Dent. 1999, 59, 192–197. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Gonzalez Peña, A.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Schelldorfer, J.; Meier, L.; Bühlmann, P. GLMMLasso: An Algorithm for High-Dimensional Generalized Linear Mixed Models Using ℓ1-Penalization. J. Comput. Graph. Stat. 2014, 23, 460–477. [Google Scholar] [CrossRef] [Green Version]
- Genolini, C.; Falissard, B. KmL: K-means for longitudinal data. Comput. Stat. 2010, 25, 317–328. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, L.; Peterson, C.B.; Do, K.A.; Jenq, R.R. Performance determinants of unsupervised clustering methods for microbiome data. Microbiome 2022, 10, 25. [Google Scholar] [CrossRef]
- Yang, L.; Wu, T.T. Model-based clustering of high-dimensional longitudinal data via regularization. Biom. Methodol. 2022, 1–14. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef] [Green Version]
- Mason, M.R.; Chambers, S.; Dabdoub, S.M.; Thikkurissy, S.; Kumar, P.S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 2018, 6, 67. [Google Scholar] [CrossRef]
- Nelson-Filho, P.; Borba, I.G.; De Mesquita, K.S.F.; da Silva, R.B.; De Queiroz, A.M.; Silva, L.A.B. Dynamics of microbial colonization of the oral cavity in newborns. Braz. Dent. J. 2013, 24, 415–419. [Google Scholar] [CrossRef]
- Rotimi, V.O.; Duerden, B.I. The development of the bacterial flora in normal neonates. J. Med. Microbiol. 1981, 14, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, P.; Pasolli, E.; Tett, A.; Asnicar, F.; Gorfer, V.; Fedi, S.; Armanini, F.; Truong, D.T.; Manara, S.; Zolfo, M.; et al. Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome. Cell Host Microbe 2018, 24, 133–145.e5. [Google Scholar] [CrossRef]
- Jo, R.; Yama, K.; Aita, Y.; Tsutsumi, K.; Ishihara, C.; Maruyama, M.; Takeda, K.; Nishinaga, E.; Shibasaki, K.-I.; Morishima, S. Comparison of oral microbiome profiles in 18-month-old infants and their parents. Sci. Rep. 2021, 11, 861. [Google Scholar] [CrossRef]
- D’Agostino, S.; Ferrara, E.; Valentini, G.; Stoica, S.A.; Dolci, M. Exploring Oral Microbiome in Healthy Infants and Children: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11403. [Google Scholar] [CrossRef]
- Lif Holgerson, P.; Harnevik, L.; Hernell, O.; Tanner, A.C.; Johansson, I. Mode of birth delivery affects oral microbiota in infants. J. Dent. Res. 2011, 90, 1183–1188. [Google Scholar] [CrossRef] [Green Version]
- Drell, T.; Štšepetova, J.; Simm, J.; Rull, K.; Aleksejeva, A.; Antson, A.; Tillmann, V.; Metsis, M.; Sepp, E.; Salumets, A.; et al. The Influence of Different Maternal Microbial Communities on the Development of Infant Gut and Oral Microbiota. Sci. Rep. 2017, 7, 9940. [Google Scholar] [CrossRef] [Green Version]
- McGhee, J.J.; Rawson, N.; Bailey, B.A.; Fernandez-Guerra, A.; Sisk-Hackworth, L.; Kelley, S.T. Meta-SourceTracker: Application of Bayesian source tracking to shotgun metagenomics. PeerJ 2020, 8, e8783. [Google Scholar] [CrossRef] [Green Version]
Both with Caries | Mothers with Caries | Children with Caries | Neither with Caries | Total with Caries | Cluster Size | |
---|---|---|---|---|---|---|
Cluster 1 (typical) | 54.10% | 93.44% | 57.38% | 3.28% | 75.41% | 122 |
Cluster 2 (high–low) | 48.72% | 97.44% | 48.72% | 2.56% | 73.08% | 39 |
Cluster 3 (low–high) | 57.14% | 85.71% | 64.29% | 7.14% | 75.00% | 14 |
Overall | 56.00% | 93.71% | 53.14% | 3.43% | 74.85% | 175 |
Cluster 1 | Cluster 2 | Cluster 3 | |||
---|---|---|---|---|---|
Species | Coefficients | Species | Coefficients | Species | Coefficients |
Prevotella oulorum | 6.99 | Alloprevotella tannerae | 0.14 | Actinomyces massiliensis | 0.22 |
Campylobacter concisus | 0.04 | Peptostreptococcaceae yurii | 0.09 | ||
Capnocytophaga sp._HMT_903 | 0.31 | Oribacterium sinus | 0.42 | ||
Ruminococcaceae bacterium_HMT_075 | 0.26 | Veillonella sp._HMT_780 | 0.10 | ||
Filifactor alocis | 0.005 | ||||
Gracilibacteria bacterium_HMT_872 | 0.05 | ||||
Leptotrichia wadei | 0.02 | ||||
Neisseria bacilliformis | 0.08 | ||||
Porphyromonas _HMT_279.2 | −0.02 | ||||
Prevotella denticola | 0.05 | ||||
Rothia dentocariosa | 0.08 | ||||
Streptococcus sanguinis | 0.05 | ||||
Streptococcus sp._HMT_431 | 0.16 | ||||
Saccharibacteria bacterium_HMT_348 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manning, S.; Xiao, J.; Li, Y.; Saraithong, P.; Paster, B.J.; Chen, G.; Wu, Y.; Wu, T.T. Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads. Genes 2023, 14, 641. https://doi.org/10.3390/genes14030641
Manning S, Xiao J, Li Y, Saraithong P, Paster BJ, Chen G, Wu Y, Wu TT. Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads. Genes. 2023; 14(3):641. https://doi.org/10.3390/genes14030641
Chicago/Turabian StyleManning, Samantha, Jin Xiao, Yihong Li, Prakaimuk Saraithong, Bruce J. Paster, George Chen, Yan Wu, and Tong Tong Wu. 2023. "Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads" Genes 14, no. 3: 641. https://doi.org/10.3390/genes14030641
APA StyleManning, S., Xiao, J., Li, Y., Saraithong, P., Paster, B. J., Chen, G., Wu, Y., & Wu, T. T. (2023). Novel Clustering Methods Identified Three Caries Status-Related Clusters Based on Oral Microbiome in Thai Mother–Child Dyads. Genes, 14(3), 641. https://doi.org/10.3390/genes14030641