Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat
Abstract
1. Introduction
2. High Breeding Potential of Synthetic Hexaploid Wheat
3. Enhanced Genomic Variation and Recombination in Synthetic Hexaploid Wheat
4. A Case of Successful Direct Application of SHW: Chuanmai 42 from Southwestern China
5. Further Application Using SHW-Derived Cultivars: Chuanmai 104
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Statistical Yearbook; FAO: Rome, Italy, 2017. [Google Scholar]
- Wang, J.; Luo, M.C.; Chen, Z.; You, F.M.; Wei, Y.; Zheng, Y.; Dvorak, J. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 2013, 198, 925–937. [Google Scholar] [CrossRef]
- Ji, Y.; Chetelat, R.T. Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor. Appl. Genet. 2003, 106, 979–989. [Google Scholar] [CrossRef]
- Nagy, E.D.; Chu, Y.; Guo, Y.; Khanal, S.; Tang, S.; Li, Y.; Dong, W.B.; Timper, P.; Taylor, C.; Ozias-Akins, P.; et al. Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol. Breed. 2010, 26, 357–370. [Google Scholar] [CrossRef]
- Xie, W.; Ben-David, R.; Zeng, B.; Dinoor, A.; Xie, C.; Sun, Q.; Röder, M.S.; Fahoum, A.; Fahima, T. Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol. Breed. 2012, 29, 399–412. [Google Scholar] [CrossRef]
- Ren, T.; Li, Z.; Yan, B.; Tan, F.; Tang, Z.; Fu, S.; Yang, M.; Ren, Z. Targeted segment transfer from rye chromosome 2R to wheat chromosomes 2A, 2B, and 7B. Cytogenet. Genome Res. 2017, 151, 50–59. [Google Scholar] [CrossRef]
- Mujeeb-Kazi, A.; Rosas, V.; Roldan, S. Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (T. turgidum L. s.lat. x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet. Resour. Crop Evol. 1996, 43, 129–134. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, G.; Yan, Z.; Chen, Q.; Yuan, Z.; Lan, X.; Zheng, Y.; Liu, D. Comparison of newly synthetic hexaploid wheat with its donors on SSR products. J. Genet. Genom. 2007, 34, 939–946. [Google Scholar] [CrossRef]
- Wan, H.; Li, J.; Ma, S.; Yang, F.; Chai, L.; Liu, Z.; Wang, Q.; Pu, Z.; Yang, W. Allopolyploidization increases genetic recombination in the ancestral diploid D genome during wheat evolution. Crop J. 2022, 10, 743–753. [Google Scholar] [CrossRef]
- Yang, F.; Wan, H.; Li, J.; Wang, Q.; Yang, N.; Zhu, X.; Liu, Z.; Yang, Y.; Ma, W.; Fan, X.; et al. Pentaploidization enriches the genetic diversity of wheat by enhancing the recombination of AB Genomes. Front. Plant Sci. 2022, 13, 883868. [Google Scholar] [CrossRef]
- Yang, W.; Liu, D.; Li, J.; Zhang, L.; Wei, H.; Hu, X.; Zheng, Y.; He, Z.; Zou, Y. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genom. 2009, 36, 539–546. [Google Scholar] [CrossRef]
- Mujeeb-Kazi, A.; Kazi, A.G.; Dundas, I.; Rasheed, A.; Ogbonnaya, F.; Kishii, M.; Bonnett, D.; Wang, R.R.C.; Xu, S.; Chen, P.; et al. Genetic diversity for wheat improvement as a conduit to food security. Adv. Agron. 2013, 122, 179–257. [Google Scholar]
- Li, J.; Wan, H.S.; Yang, W.Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 2014, 52, 735–742. [Google Scholar] [CrossRef]
- Li, A.; Liu, D.; Yang, W.; Kishii, M.; Mao, L. Synthetic hexaploid wheat: Yesterday, today and tomorrow. Engineering 2018, 4, 552–558. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, L.; Zhao, L.; Dai, S.; Li, A.; Yang, W.; Xie, D.; Li, Q.; Ning, S.; Yan, Z.; et al. A breeding strategy targeting the secondary gene pool of bread wheat: Introgression from a synthetic hexaploid wheat. Theor. Appl. Genet. 2019, 132, 2285–2294. [Google Scholar] [CrossRef]
- Tang, Y.; Rosewarne, G.M.; Li, C.; Wu, X.; Yang, W.; Wu, C. Physiological factors underpinning grain yield improvements of synthetic-derived wheat in southwestern China. Crop Sci. 2015, 55, 98–112. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, X.; Li, C.; Yang, W.; Huang, M.; Ma, X.; Li, S. Yield, growth, canopy traits and photosynthesis in high-yielding, synthetic hexaploid-derived wheats cultivars compared with non-synthetic wheats. Crop Pasture Sci. 2017, 68, 115–125. [Google Scholar] [CrossRef]
- Liu, M.; Tong, H.; Liu, Y.; Li, C.; Wu, X.; Li, M.; Li, X.; Tang, Y. Genetic progress in grain yield and the associated physiological traits of popular wheat in southwestern China from 1969 to 2012. Crop Sci. 2021, 61, 1971–1986. [Google Scholar] [CrossRef]
- del Blanco, I.A.; Rajaram, S.; Kronstad, W.E.; Reynolds, M.P. Physiological performance of synthetic hexaploid wheat-derived populations. Crop Sci. 2000, 40, 1257–1263. [Google Scholar] [CrossRef]
- Yang, H.; Chen, R.; Chen, Y.; Li, H.; Wei, T.; Xie, W.; Fan, G. Agronomic and physiological traits associated with genetic improvement of phosphorus use efficiency of wheat grown in a purple lithomorphic soil. Crop J. 2022, 10, 1151–1164. [Google Scholar] [CrossRef]
- Lopes, M.S.; Reynolds, M.P. Drought adaptive traits and wide adaptation in elite lines derived from resynthesized hexaploid wheat. Crop Sci. 2011, 51, 1617–1626. [Google Scholar] [CrossRef]
- Innes, R.L.; Kerber, E.R. Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 1994, 37, 813–822. [Google Scholar] [CrossRef]
- Yang, W.Y.; Yu, Y.; Zhang, Y.; Hu, X.R.; Wang, Y.; Zhou, Y.C.; Lu, B.R. Inheritance and expression of stripe rust resistance in common wheat (Triticum aestivum) transferred from Aegilops tauschii and its utilization. Hereditas 2003, 139, 49–55. [Google Scholar] [CrossRef]
- Olson, E.L.; Rouse, M.N.; Pumphrey, M.O.; Bowden, R.L.; Gill, B.S.; Poland, J.A. Simultaneous transfer, introgression and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theor. Appl. Genet. 2013, 126, 1179–1188. [Google Scholar] [CrossRef]
- Miranda, L.M.; Murphy, J.P.; Marshall, D.; Leath, S. Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor. Appl. Genet. 2006, 113, 1497–1504. [Google Scholar] [CrossRef]
- Wiersma, A.T.; Pulman, J.A.; Brown, L.K.; Cowger, C.; Olson, E.L. Identification of Pm58 from Aegilops tauschii. Theor. Appl. Genet. 2017, 130, 1123–1133. [Google Scholar] [CrossRef]
- Xue, S.; Hu, S.; Chen, X.; Ma, Y.; Lu, M.; Bai, S.; Wang, X.; Sun, T.; Wang, Y.; Wan, H.; et al. Fine mapping of Pm58 from Aegilops tauschii conferring powdery mildew resistance. Theor. Appl. Genet. 2022, 135, 1657–1669. [Google Scholar] [CrossRef]
- Cox, T.S.; Hatchett, J.H. Hessian fly-resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci. 1994, 34, 958–960. [Google Scholar] [CrossRef]
- Zhu, L.; Smith, C.M.; Fritz, A.; Boyko, E.; Voothuluru, P.; Gill, B.S. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theor. Appl. Genet. 2005, 111, 831–837. [Google Scholar] [CrossRef]
- Ryan, P.R.; Raman, H.; Gupta, S.; Sasaki, T.; Yamamoto, Y.; Delhaize, E. The multiple origins of aluminium resistance in hexaploid wheat include Aegilops tauschii and more recent cis mutations to TaALMT1. Plant J. 2010, 64, 446–455. [Google Scholar] [CrossRef]
- Sohail, Q.; Inoue, T.; Tanaka, H.; Eltayeb, A.E.; Matsuoka, Y.; Tsujimoto, H. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed. Sci. 2011, 61, 347–357. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, S.; Kong, X.; Li, Y.; Zhao, G.; He, W.; Appels, R.; Pfeifer, M.; Tao, Y.; Zhang, X.; et al. Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 2013, 496, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Liu, D.; Wu, J.; Zhao, X.; Hao, M.; Geng, S.; Yan, J.; Jiang, X.; Zhang, L.; Wu, J.; et al. mRNA and Small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 2014, 26, 1878–1900. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Kempf, H.; Ganal, M.W.; Röder, M.S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004, 109, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Kulwal, P.L.; Balyan, H.S.; Gupta, P.K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 2007, 19, 163–177. [Google Scholar] [CrossRef]
- Yu, M.; Chen, G.; Zhang, L.; Liu, Y.; Liu, D.; Wang, J.; Pu, Z.; Zhang, L.; Lan, X.; Wei, Y.; et al. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. tauschii. J. Integr. Agric. 2014, 13, 1835–1844. [Google Scholar] [CrossRef]
- Wan, H.; Yang, Y.; Li, J.; Zhang, Z.; Yang, W. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica 2015, 205, 275–285. [Google Scholar] [CrossRef]
- Dvorak, J.; Luo, M.C.; Yang, Z.L.; Zhang, H.B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 1998, 97, 657–670. [Google Scholar] [CrossRef]
- Dvorak, J.; Deal, K.R.; Luo, M.C.; You, F.M.; von Borstel, K.; Dehghani, H. The origin of spelt and free-threshing hexaploid wheat. J. Hered. 2012, 103, 426–441. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Li, Y.; Xu, J.; Bi, A.; Kang, L.; Xu, D.; Chen, H.; Wang, Y.; Wang, Y.G.; et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 2020, 52, 1412–1422. [Google Scholar] [CrossRef]
- Comai, L. The advantages and disadvantages of being polyploidy. Nat. Rev. Genet. 2005, 6, 836–846. [Google Scholar] [CrossRef]
- Hao, M.; Luo, J.; Zeng, D.; Zhang, L.; Ning, S.; Yuan, Z.; Yan, Z.; Zhang, H.; Zheng, Y.; Feuillet, C.; et al. QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization. Genes Genomes Genet. 2014, 4, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Fedak, G.; Guo, W.; Liu, B. Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics 2005, 170, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.A.; Guan, L.L.; Chen, G.Y.; Pu, Z.E.; Hou, D.B. Allopolyploidy-induced rapid genomic changes in newly generated synthetic hexaploid wheat. Biotechnol. Biotechnol. Equip. 2017, 31, 236–242. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, L.; Zheng, J.; Li, Y.; Zhang, L.; Liu, D.; Pu, Z.; Hao, M. Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome 2020, 63, 329–336. [Google Scholar] [CrossRef] [PubMed]
- The Wheat Yield per mu in Jiangyou Reach a New Record in Sichuan Province (In Chinese). Available online: http://www.moa.gov.cn/ztzl/qnszcgdfs/201006/t20100602_1497968.htm (accessed on 2 June 2010).
- Representative Achievements: Exploration of Superior Gene from Synthetic Hexaploid wheat and Breeding and Popularization of Chuanmai 42-Series Cultivars (In Chinese). Available online: http://www.chinawestagr.com/zwyjs/showcontent.asp?id=49833 (accessed on 1 September 2022).
- Liao, J.; Wei, H.T.; Li, J.; Yang, Y.M.; Zeng, Y.C.; Peng, Z.S.; Yang, W.Y. Detection of the introgression loci of synthetic hexaploid wheat in wheat variety Chuanmai 42 by SSR markers. Acta Agron. Sin. 2007, 33, 703–707, (In Chinese with English Abstract). [Google Scholar]
- Li, J.; Wei, H.T.; Hu, X.R.; Li, C.S.; Tang, Y.L.; Liu, D.C.; Yang, W.Y. Identification of a high-yield introgression locus in Chuanmai 42 inherited from synthetic hexaploid wheat. Acta Agron. Sin. 2011, 37, 255–262. [Google Scholar] [CrossRef]
- Li, G.Q.; Li, Z.F.; Yang, W.Y.; Zhang, Y.; He, Z.H.; Xu, S.C.; Singh, R.P.; Qu, Y.Y.; Xia, X.C. Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai42 and its allelism with Yr24 and Yr26. Theor. Appl. Genet. 2006, 112, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wan, H.S.; Yang, W.Y.; Wang, Q.; Zhu, X.G.; Hu, X.R.; Wei, H.T.; Tang, Y.L.; Li, C.S.; Peng, Z.S.; et al. Dissection of genetic components in the new high-yielding wheat cultivar Chuanmai 104. Sci. Agric. Sin. 2014, 47, 2281–2291, (In Chinese with English abstract). [Google Scholar]
- Chuanmai 104, Bred by Sichuan Academy of Agricultural Sciences, Reached the Grain Yield of 729.8 kg/mu, Breaking the Record of Wheat Yield per mu in Southwestern China (In Chinese). Available online: http://www.chinawestagr.com/homepage/showcontent.asp?id=40323 (accessed on 19 May 2020).
- Decoding Science & Technology of Sichuan II: What Is the New Cultivar Chuanmai 104 with the Maximum Grain Yield 729.8 kg/mu? Let’s Find Out (in Chinese). Available online: https://cbgc.scol.com.cn/news/1005312 (accessed on 17 March 2021).
- De Storme, N.; Geelen, D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environ. 2014, 37, 1–18. [Google Scholar] [CrossRef]
- Phillips, D.; Jenkins, G.; Macaulay, M.; Nibau, C.; Wnetrzak, J.; Fallding, D.; Colas, I.; Oakey, H.; Waugh, R.; Ramsay, L. The effect of temperature on the male and female recombination landscape of barley. New Phytol. 2015, 208, 421–429. [Google Scholar] [CrossRef]
- Xiong, D.; Flexas, J.; Huang, J.; Cui, K.; Wang, F.; Douthe, C.; Lin, M. Why high yield QTLs failed in preventing yield stagnation in rice? Crop Environ. 2022, 1, 103–107. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Z.H.; Wan, H.S.; Wei, H.T.; Long, H.; Li, T.; Deng, G.B.; Li, J.; Yang, W.Y. Identification and pyramiding of QTLs for traits associated with pre-harvest sprouting resistance in two wheat cultivars Chuanmai 42 and Chuannong 16. Sci. Agric. Sin. 2020, 53, 3421–3431, (In Chinese with English abstract). [Google Scholar]
- Yang, M.; Li, G.; Wan, H.; Li, L.; Li, J.; Yang, W.; Pu, Z.; Yang, Z.; Yang, E. Identification of QTLs for stripe rust resistance in a recombinant inbred line population. Int. J. Mol. Sci. 2019, 20, 3410. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Q.; Wan, H.; Yang, F.; Wei, H.; Xu, Z.; Ji, H.; Xia, X.; Li, J.; Yang, W. QTL mapping for adult-plant resistance to powdery mildew in Chinese elite common wheat Chuanmai 104. Cereal Res. Commun. 2021, 49, 99–108. [Google Scholar] [CrossRef]
- Tang, Y.L.; Li, J.; Wu, Y.Q.; Wei, H.T.; Li, C.S.; Yang, W.Y.; Chen, F. Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. Agric. Sci. Chi. 2011, 10, 1665–1680. [Google Scholar] [CrossRef]
- Lu, B.; Deng, G.; Zhang, H.; Li, J.; Wan, H.; Pan, Z.; Yang, W.; Yu, M.; Long, H. QTL mapping of yield-related traits in the high-yield wheat variety Chuanmai42. Chin. J. Appl. Environ. Biol. 2017, 23, 0183–0192, (In Chinese with English abstract). [Google Scholar]
- Zhu, X.; Wan, H.; Li, J.; Zheng, J.; Tang, Z.; Yang, W. Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat. J. Nanjing Agric. Univ. 2018, 41, 625–632, (In Chinese with English abstract). [Google Scholar]
- Yang, Y.; Wan, H.; Yang, F.; Xiao, C.; Li, J.; Ye, M.; Chen, C.; Deng, G.; Wang, Q.; Li, A.; et al. Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PloS ONE 2020, 15, e0234882. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, N.; Majidi, M.M.; Mirlohi, A. Potentials of synthetic hexaploid wheats to improve drought tolerance. Sci. Rep. 2022, 12, 20482. [Google Scholar] [CrossRef] [PubMed]
- Mourad, A.M.I.; Morgounov, A.; Baenziger, P.S.; Esmail, S.M. Genetic variation in common bunt resistance in synthetic hexaploid wheat. Plants 2023, 12, 2. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Jia, X.; Tian, Z.; Wang, Y.; Wang, C.; Zhang, H.; Liu, X.; Zhao, J.; Deng, P.; et al. Chromosome karyotype and stability of new synthetic hexaploid wheat. Mol. Breeding 2021, 41, 60. [Google Scholar] [CrossRef]
- Gorafi, Y.S.A.; Kim, J.S.; Elbashir, A.A.E.; Tsujimoto, H. A population of wheat multiple synthetic derivatives: An effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor. Appl. Genet. 2018, 131, 1615–1626. [Google Scholar] [CrossRef] [PubMed]
SHWs | Sub-Genome | Genomic Variation | S0 | S6 |
---|---|---|---|---|
Langdon/SQ783 | AB genome | SNP | 242,260 | 10,609,935 |
Deletion | 25,376 | 354,762 | ||
Insertion | 8017 | 346,855 | ||
Total | 275,653 | 11,311,552 | ||
D genome | SNP | 40,365 | 5,610,199 | |
Deletion | 8121 | 263,781 | ||
Insertion | 8021 | 294,170 | ||
Total | 56,507 | 6,168,150 | ||
Langdon/SQ665 | AB genome | SNP | 39,185 | 235,260 |
Deletion | 6697 | 25,156 | ||
Insertion | 6674 | 7784 | ||
Total | 52,556 | 268,200 | ||
D genome | SNP | 27,691 | 3,906,319 | |
Deletion | 4763 | 212,619 | ||
Insertion | 4764 | 186,499 | ||
Total | 37,218 | 4,305,437 |
Year | Trial Grade | Average Yield (Kg/mu) a | Check Cultivar | Increasing Rate (%) |
---|---|---|---|---|
2002 | Sichuan regional cultivar trials | 414.6 | Chuanmai 28 | 70.2 b |
2003 | Sichuan regional cultivar trials | 403.2 | Chuanmai 107 | 28.3 |
2003 | National regional cultivar trials | 354.7 | Chuanmai 107 | 16.3 |
2004 | National regional cultivar trials | 406.3 | Chuanmai 107 | 16.5 |
Cultivar | Pedigree a | Generation | Regional Trial Yield (Kg/mu) | Check Cultivar | Increasing Rate (%) | Released Time |
---|---|---|---|---|---|---|
Chuanmai 51 | 174/183//99-1572 | 1st | 373.9 | Chuanmai 107 | 13.4 | 2008 |
Chuanmai 56 | Chuanmai 30/Chuanmai 42 | 1st | 362.7 | Chuanmai 107 | 13.5 | 2009 |
Chuanmai 58 | Chuanmai 42/03Jian3//Chuanmai 42 | 1st | 381.9 | Mianmai 37 | 5.0 | 2010 |
Chuanmai 104 | Chuanmai 42/Chuannong 16 | 1st | 408.7 | Chuanmai 42 | 8.5 | 2012 |
Shumai 969 | SHW-L1/SW8188//Chuanyu 18/3/Chuanmai 42 | 1st | 384.0 | Mianmai 37 | 8.1 | 2013 |
Chuanmai 64 | Chuanmai 42/Chuannong 16 | 1st | 400.3 | Mianmai 37 | 12.0 | 2013 |
Chuanmai 90 | Jian38/99116//Chuanmai 42 | 1st | 371.1 | Mianmai 37 | 6.9 | 2014 |
Chuanmai 91 | Neimai 8/Zhengmai 9023//00062/3/Chuanmai 42 | 1st | 375.4 | Mianmai 37 | 5.4 | 2014 |
Zhongkemai 138 | Chuanmai 42/Chuanyu 16 | 1st | 389.0 | Mianmai 37 | 12.0 | 2014 |
Chuanmai 92 | Neimai 8/Jian3//Chuanmai 42 | 1st | 353.0 | Mianmai 37 | 11.7 | 2015 |
Chuanmai 81 | SW8019/99-1572//99-1572 | 1st | 350.4 | Mianmai 37 | 8.1 | 2015 |
Guohaomai 3 | 1227-185/99-1522//99-1572 | 1st | 384.0 | Chuanmai 42 | −-3.5 | 2016 |
Chuanmai 602 | Guinong 21/SW324/Chuanmai 42 | 1st | 403.5 | Mianmai 367 | 13.0 | 2017 |
Chuanmai 603 | Aibaiguinong 21/Mianyang 26//Chuanmai 42 | 1st | 355.1 | Mianmai 367 | 6.3 | 2018 |
Chuanmai 604 | Guinong 21/SW3243//Chuanmai 42 | 1st | 388.2 | Mianmai 367 | 13.0 | 2018 |
Chuanmai 86 | R4117/1572 | 1st | 382.8 | Mianmai 367 | 12.5 | 2018 |
Neimai 101 | 99-1572/M0501 | 1st | 394.8 | Mianmai 367 | 10.5 | 2020 |
Chuanmai 53 | 477(99-1572)/Miannong 4//Y314 | 2nd | 351.1 | Chuanmai 107 | 20.2 | 2009 |
Chuanmai 66 | 99-1572/98-266//01-3570 | 2nd | 377.3 | Mianmai 37 | 5.6 | 2014 |
Chuanmai 67 | 99-1572/SW8688//01-3570 | 2nd | 391.6 | Mianmai 37 | 9.9 | 2014 |
Zhongkemai 169 | Zhongkemai 138/Chuannong 27 | 2nd | 380.7 | Mianmai 367 | 7.8 | 2019 |
Zhongkemai 13 | R64002/Zhongkemai 138 | 2nd | 389.0 | Mianmai 367 | 7.0 | 2020 |
Zhongke-NM 168 | Zhongkemai 138/PW18 | 2nd | 221.1 | Yumai 13 | 2.3 | 2020 |
Chuanmai 68 | 99-1572/98-266//01-3570 | 2nd | 379.6 | Mianmai 37 | 16.5 | 2015 |
Chuanmai 601 | Guinong 21/SW3243//Chuanmai 42/ Chuanmai 44 | 2nd | 394.3 | Chuanmai 42 | 5.8 | 2018 |
Xikemai 546 | 07Jian3401-05/Yumai 1 | 2nd | 381.4 | Mianmai 367 | 5.8 | 2021 |
Cultivar | Pedigree a | Generation | Regional Trial Yield (Kg/mu) | Check Cultivar | Increasing Rate (%) | Released Time |
---|---|---|---|---|---|---|
Chuanmai 69 | Chuanmai 104/B2183 | 1st | 361.6 | Mianmai 37 | 13.2 | 2015 |
Chuanmai 1546 | Chuanchongzu 104/Chuan 07005 | 1st | 374.8 | Mianmai 367 | 9.1 | 2018 |
Chuanmai 93 | Pubing 3504/Chuanyu 20//Chuanmai 104 | 1st | 385.7 | Mianmai 367 | 16.9 | 2018 |
Chuanmai 96 | Jian3/Chuannong 19//Chuanmai 104 | 1st | 380.9 | Mianmai 367 | 10.1 | 2018 |
Chumai 16 | Neimai 8/Jian3//Chuanchongzu 104 | 1st | 437.2 | Yunmai 56 | 9.3 | 2018 |
Chuanmai 1580 | Chuanchongzu 104/Chuan 07005 | 1st | 394.3 | Mianmai 367 | 10.4 | 2019 |
Chuanmai 98 | Jian 3/Chuannong 19//Chuanmai 104 | 1st | 405.9 | Mianmai 367 | 13.0 | 2019 |
Chuanmai 1648 | Chuanchongzu 104/CN16Xuan-1 | 1st | 420.0 | Mianmai 367 | 13.8 | 2020 |
Chuanmai 1603 | Chuanchongzu 104/CN16Xuan-1 | 1st | 417.6 | Mianmai 367 | 15.9 | 2020 |
Chuanmai 1694 | Chuanchongzu 104/Chuan 07005 | 1st | 399.7 | Mianmai 367 | 8.8 | 2020 |
Neimai 866 | Chuanchongzu 104/Chuan 08Ping32 | 1st | 390.3 | Mianmai 367 | 7.5 | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, H.; Yang, F.; Li, J.; Wang, Q.; Liu, Z.; Tang, Y.; Yang, W. Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat. Genes 2023, 14, 283. https://doi.org/10.3390/genes14020283
Wan H, Yang F, Li J, Wang Q, Liu Z, Tang Y, Yang W. Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat. Genes. 2023; 14(2):283. https://doi.org/10.3390/genes14020283
Chicago/Turabian StyleWan, Hongshen, Fan Yang, Jun Li, Qin Wang, Zehou Liu, Yonglu Tang, and Wuyun Yang. 2023. "Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat" Genes 14, no. 2: 283. https://doi.org/10.3390/genes14020283
APA StyleWan, H., Yang, F., Li, J., Wang, Q., Liu, Z., Tang, Y., & Yang, W. (2023). Genetic Improvement and Application Practices of Synthetic Hexaploid Wheat. Genes, 14(2), 283. https://doi.org/10.3390/genes14020283