Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants
Abstract
:1. Introduction
2. Consensus Sequence and the Localization of the EAR Motif
2.1. Consensus Sequence of the EAR Motif
2.2. Significance of Proline and Its Location in Relation to the DLN Sub Motif in DLNx(x)P Type EAR Motifs
2.3. Localization of the EAR Motif
3. Molecular Functions of EAR Motif Containing Proteins
3.1. Growth and Morphology
3.2. Metabolism and Homeostasis
3.3. Abiotic Stress Response
3.4. Biotic Stress Response
3.5. Hormonal Pathway/Signaling
3.6. Fertility
3.7. Ripening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Payankaulam, S.; Li, L.M.; Arnosti, D.N. Transcriptional Repression: Conserved and Evolved Features. Curr. Biol. 2010, 20, R764–R771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Karmarkar, V. Groucho/Tup1 Family Co-Repressors in Plant Development. Trends Plant Sci. 2008, 13, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Krogan, N.T.; Long, J.A. Why so Repressed? Turning off Transcription during Plant Growth and Development. Curr. Opin. Plant Biol. 2009, 12, 628–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanna-Rose, W.; Hansen, U. Active Repression Mechanisms of Eukaryotic Transcription Repressors. Trends Genet 1996, 12, 229–234. [Google Scholar] [CrossRef]
- Pazin, M.J.; Kadonaga, J.T. What’s up and down with Histone Deacetylation and Transcription? Cell 1997, 89, 325–328. [Google Scholar] [CrossRef] [Green Version]
- Ohta, M.; Matsui, K.; Hiratsu, K.; Shinshi, H.; Ohme-Takagi, M. Repression Domains of Class II ERF Transcriptional Repressors Share an Essential Motif for Active Repression. Plant Cell 2001, 13, 1959–1968. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Y.; Yan, H.; Tian, T.; You, Q.; Zhang, L.; Xu, W.; Su, Z. PlantEAR: Functional Analysis Platform for Plant EAR Motif-Containing Proteins. Front. Genet. 2018, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; An, J.H.; Cho, H.T. Biological and Molecular Functions of Two EAR Motifs of Arabidopsis IAA7. J. Plant Biol. 2016, 59, 24–32. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Dong, H.; Sun, J. Functional Regulation of Q by MicroRNA172 and Transcriptional Co-Repressor TOPLESS in Controlling Bread Wheat Spikelet Density. Plant Biotechnol. J. 2018, 16, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Chen, L.; Pang, S.; Zheng, Q.; Quan, S.; Liu, Y.; Xu, T.; Liu, Y.; Qi, M. Function Analysis of the ERF and DREB Subfamilies in Tomato Fruit Development and Ripening. Front. Plant Sci. 2022, 13, 849048. [Google Scholar] [CrossRef]
- Joshi, S.; Keller, C.; Perry, S.E. The Ear Motif in the Arabidopsis Mads Transcription Factor Agamous-like 15 Is Not Necessary to Promote Somatic Embryogenesis. Plants 2021, 10, 758. [Google Scholar] [CrossRef] [PubMed]
- Kazan, K. Negative Regulation of Defence and Stress Genes by EAR-Motif-Containing Repressors. Trends Plant Sci. 2006, 11, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin-Wang, K.; Liu, Z.; Allan, A.C.; Qin, S.; Zhang, J.; Liu, Y. Genome-Wide Analysis and Expression Profiles of the StR2R3-MYB Transcription Factor Superfamily in Potato (Solanum Tuberosum L.). Int. J. Biol. Macromol. 2020, 148, 817–832. [Google Scholar] [CrossRef] [PubMed]
- Hervé, C.; Dabos, P.; Bardet, C.; Jauneau, A.; Auriac, M.C.; Ramboer, A.; Lacout, F.; Tremousaygue, D. In Vivo Interference with Attcp20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for Development. Plant Physiol. 2009, 149, 1462–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Liu, D.; Xia, Y.; Li, Z.; Jing, D.; Du, J.; Niu, N.; Ma, S.; Wang, J.; Song, Y.; et al. Identification of the WUSCHEL-Related Homeobox (WOX) Gene Family, and Interaction and Functional Analysis of TaWOX9 and TaWUS in Wheat. Int. J. Mol. Sci. 2020, 21, 1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.; Wei, X.; Dong, X.; Wang, C.; Sui, N.; Guo, J.; Yuan, F.; Gong, Z.; Li, X.; Zhang, Y.; et al. Arabidopsis ZINC FINGER PROTEIN1 Acts Downstream of GL2 to Repress Root Hair Initiation and Elongation by Directly Suppressing BHLH Genes. Plant Cell 2020, 32, 206–225. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lei, R.; Pu, M.; Cai, Y.; Lu, C.; Li, Z.; Liang, G. BHLH11 Negatively Regulates Fe Homeostasis by Its EAR Motifs Recruiting Corepressors in Arabidopsis. Plant Physiol. 2022, 188, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Zhu, J.Y.; Ryu, H.; Hwang, I.; Wang, Z.Y. TOPLESS Mediates Brassinosteroid-Induced Transcriptional Repression through Interaction with BZR1. Nat. Commun. 2014, 5, 4140. [Google Scholar] [CrossRef] [Green Version]
- Borg, M.; Rutley, N.; Kagale, S.; Hamamura, Y.; Gherghinoiu, M.; Kumar, S.; Sari, U.; Esparza-Franco, M.A.; Sakamoto, W.; Rozwadowski, K.; et al. An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis. Plant Cell 2014, 26, 2098–2113. [Google Scholar] [CrossRef] [Green Version]
- Tsutsui, T.; Kato, W.; Asada, Y.; Sako, K.; Sato, T.; Sonoda, Y.; Kidokoro, S.; Yamaguchi-Shinozaki, K.; Tamaoki, M.; Arakawa, K.; et al. DEAR1, a Transcriptional Repressor of DREB Protein That Mediates Plant Defense and Freezing Stress Responses in Arabidopsis. J. Plant Res. 2009, 122, 633–643. [Google Scholar] [CrossRef]
- Li, R.; Reddy, V.A.; Jin, J.; Rajan, C.; Wang, Q.; Yue, G.; Lim, C.H.; Chua, N.H.; Ye, J.; Sarojam, R. Comparative Transcriptome Analysis of Oil Palm Flowers Reveals an EAR-Motif-Containing R2R3-MYB That Modulates Phenylpropene Biosynthesis. BMC Plant Biol. 2017, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Cheng, Y.; Wu, J.; Cheng, Q.; Li, W.; Fan, S.; Jiang, L.; Xu, Z.; Kong, F.; Zhang, D.; et al. Overexpression of GmERF5, a New Member of the Soybean EAR Motif-Containing ERF Transcription Factor, Enhances Resistance to Phytophthora Sojae in Soybean. J. Exp. Bot. 2015, 66, 2635–2647. [Google Scholar] [CrossRef] [PubMed]
- Jeong, N.; Suh, S.J.; Kim, M.H.; Lee, S.; Moon, J.K.; Kim, H.S.; Jeong, S.C. Ln Is a Key Regulator of Leaflet Shape and Number of Seeds per Pod in Soybean. Plant Cell 2013, 24, 4807–4818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, S.B.; Hagen, G.; Guilfoyle, T.J. Aux/IAA Proteins Contain a Potent Transcriptional Repression Domain. Plant Cell 2004, 16, 533–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Kim, H.S.; Ma, P.; Jia, Z.; Guo, X.; Xie, Y.; Kwak, S.S.; Zhang, P.; Bian, X. A Novel Ethylene-Responsive Factor IbERF4 from Sweetpotato Negatively Regulates Abiotic Stress. Plant Biotechnol. Rep. 2020, 14, 397–406. [Google Scholar] [CrossRef]
- Shyu, C.; Figueroa, P.; de Pew, C.L.; Cooke, T.F.; Sheard, L.B.; Moreno, J.E.; Katsir, L.; Zheng, N.; Browse, J.; Howea, G.A. JAZ8 Lacks a Canonical Degron and Has an EAR Motif That Mediates Transcriptional Repression of Jasmonate Responses in Arabidopsis. Plant Cell 2012, 24, 536–550. [Google Scholar] [CrossRef] [Green Version]
- Darino, M.; Chia, K.S.; Marques, J.; Aleksza, D.; Soto-Jiménez, L.M.; Saado, I.; Uhse, S.; Borg, M.; Betz, R.; Bindics, J.; et al. Ustilago Maydis Effector Jsi1 Interacts with Topless Corepressor, Hijacking Plant Jasmonate/Ethylene Signaling. New Phytol. 2021, 229, 3393–3407. [Google Scholar] [CrossRef]
- Li, L.X.; Wei, Z.Z.; Zhou, Z.L.; Zhao, D.L.; Tang, J.; Yang, F.; Li, Y.H.; Chen, X.Y.; Han, Z.; Yao, G.F.; et al. A Single Amino Acid Mutant in the EAR Motif of IbMYB44.2 Reduced the Inhibition of Anthocyanin Accumulation in the Purple-Fleshed Sweetpotato. Plant Physiol. Biochem. 2021, 167, 410–419. [Google Scholar] [CrossRef]
- Sinharoy, S.; Torres-Jerez, I.; Bandyopadhyay, K.; Kereszt, A.; Pislariu, C.I.; Nakashima, J.; Benedito, V.A.; Kondorosi, E.; Udvardi, M.K. The C2H2 Transcription Factor REGULATOR OF SYMBIOSOME DIFFERENTIATION Represses Transcription of the Secretory Pathway Gene VAMP721a and Promotes Symbiosome Development in Medicago Truncatula. Plant Cell 2013, 25, 3584–3601. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Chen, J.; Yue, M.; Xu, C.; Jian, W.; Liu, Y.; Song, B.; Gao, Y.; Cheng, Y.; Li, Z. Tomato Transcriptional Repressor MYB70 Directly Regulates Ethylene-Dependent Fruit Ripening. Plant J. 2020, 104, 1568–1581. [Google Scholar] [CrossRef]
- Ogata, T.; Kida, Y.; Arai, T.; Kishi, Y.; Manago, Y.; Murai, M.; Matsushita, Y. Overexpression of Tobacco Ethylene Response Factor NtERF3 Gene and Its Homologues from Tobacco and Rice Induces Hypersensitive Response-like Cell Death in Tobacco. J. Gen. Plant Pathol. 2012, 78, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, J.; Quan, R.; Pan, X.; Wan, L.; Huang, R. EAR Motif Mutation of Rice OsERF3 Alters the Regulation of Ethylene Biosynthesis and Drought Tolerance. Planta 2013, 237, 1443–1451. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhao, L.; Yang, Q.; Amar, M.H.; Ogutu, C.; Peng, Q.; Liao, L.; Zhang, J.; Han, Y. Identification of EIL and ERF Genes Related to Fruit Ripening in Peach. Int. J. Mol. Sci. 2020, 21, 2846. [Google Scholar] [CrossRef] [Green Version]
- Sherif, S.; El-Sharkawy, I.; Paliyath, G.; Jayasankar, S. PpERF3b, a Transcriptional Repressor from Peach, Contributes to Disease Susceptibility and Side Branching in EAR-Dependent and -Independent Fashions. Plant Cell Rep. 2013, 32, 1111–1124. [Google Scholar] [CrossRef]
- Bedon, F.; Bomal, C.; Caron, S.; Levasseur, C.; Boyle, B.; Mansfield, S.D.; Schmidt, A.; Gershenzon, J.; Grima-Pettenati, J.; Séguin, A.; et al. Subgroup 4 R2R3-MYBs in Conifer Trees: Gene Family Expansion and Contribution to the Isoprenoid-and Flavonoid-Oriented Responses. J. Exp. Bot. 2010, 61, 3847–3864. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.J.; Liu, J.Y. The Arabidopsis EAR-Motif-Containing Protein RAP2.1 Functions as an Active Transcriptional Repressor to Keep Stress Responses under Tight Control. BMC Plant Biol. 2010, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wang, X.; Wang, Y.; Zhou, G.; Wang, C.; Hussain, S.; Adnan; Lin, R.; Wang, T.; Wang, S. SlEAD1, an EAR Motif-Containing ABA down-Regulated Novel Transcription Repressor Regulates ABA Response in Tomato. GM Crops Food 2020, 11, 275–289. [Google Scholar] [CrossRef]
- Deng, H.; Chen, Y.; Liu, Z.; Liu, Z.; Shu, P.; Wang, R.; Hao, Y.; Su, D.; Pirrello, J.; Liu, Y.; et al. SlERF.F12 Modulates the Transition to Ripening in Tomato Fruit by Recruiting the Co-Repressor TOPLESS and Histone Deacetylases to Repress Key Ripening Genes. Plant Cell 2022, 34, 1250–1272. [Google Scholar] [CrossRef]
- Upadhyay, R.K.; Soni, D.K.; Singh, R.; Dwivedi, U.N.; Pathre, U.V.; Nath, P.; Sane, A.P. SlERF36, an EAR-Motif-Containing ERF Gene from Tomato, Alters Stomatal Density and Modulates Photosynthesis and Growth. J. Exp. Bot. 2013, 64, 3237. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Ward, S.; Li, P.; Bennett, T.; Leyser, O. SMAX1-LIKE7 Signals from the Nucleus to Regulate Shoot Development in Arabidopsis via Partially EAR Motif-Independent Mechanisms. Plant Cell 2016, 28, 1581–1601. [Google Scholar] [CrossRef]
- Tian, Z.; He, Q.; Wang, H.; Liu, Y.; Zhang, Y.; Shao, F.; Xie, C. The Potato ERF Transcription Factor StERF3 Negatively Regulates Resistance to Phytophthora Infestans and Salt Tolerance in Potato. Plant Cell Physiol. 2014, 56, 992–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Z.D.; Zhang, Y.; Liu, J.; Xie, C.H. Novel Potato C2H2-Type Zinc Finger Protein Gene, StZFP1, Which Responds to Biotic and Abiotic Stress, Plays a Role in Salt Tolerance. Plant Biol. 2010, 12, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Liu, J.; Liu, P.; Ming, D.; Sun, J. Overexpression of TaJAZ1 Increases Powdery Mildew Resistance through Promoting Reactive Oxygen Species Accumulation in Bread Wheat. Sci. Rep. 2019, 9, 5691. [Google Scholar] [CrossRef] [Green Version]
- Tao, Q.; Guo, D.; Wei, B.; Zhang, F.; Pang, C.; Jiang, H.; Zhang, J.; Wei, T.; Gu, H.; Qu, L.J.; et al. The TIE1 Transcriptional Repressor Links TCP Transcription Factors with TOPLESS/TOPLESS-RELATED Corepressors and Modulates Leaf Development in Arabidopsis. Plant Cell 2013, 25, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Song, S.K.; Jang, H.U.; Kim, Y.H.; Lee, B.H.; Lee, M.M. Overexpression of Three Related Root-Cap Outermost-Cell-Specific C2H2-Type Zinc-Finger Protein Genes Suppresses the Growth of Arabidopsis in an EAR-Motif-Dependent Manner. BMB Rep. 2020, 53, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciftci-Yilmaz, S.; Morsy, M.R.; Song, L.; Coutu, A.; Krizek, B.A.; Lewis, M.W.; Warren, D.; Cushman, J.; Connolly, E.L.; Mittler, R. The EAR-Motif of the Cys2/His2-Type Zinc Finger Protein Zat7 Plays a Key Role in the Defense Response of Arabidopsis to Salinity Stress. J. Biol. Chem. 2007, 282, 9260–9268. [Google Scholar] [CrossRef] [Green Version]
- Dou, D.; Han, S.; Cao, L.; Ku, L.; Liu, H.; Su, H.; Ren, Z.; Zhang, D.; Zeng, H.; Dong, Y.; et al. CLA4 Regulates Leaf Angle through Multiple Hormone Signaling Pathways in Maize. J. Exp. Bot. 2021, 72, 1782–1794. [Google Scholar] [CrossRef]
- Sun, P.; Shi, Y.; Valerio, A.G.O.; Borrego, E.J.; Luo, Q.; Qin, J.; Liu, K.; Yan, Y. An Updated Census of the Maize TIFY Family. PLoS ONE 2021, 16, e0247271. [Google Scholar] [CrossRef]
- Dreyer, I. Nutrient Cycling Is an Important Mechanism for Homeostasis in Plant Cells. Plant Physiol. 2021, 187, 2246–2261. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.K. Abiotic Stress Responses in Plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Iqbal, Z.; Iqbal, M.S.; Hashem, A.; Abd_Allah, E.F.; Ansari, M.I. Plant Defense Responses to Biotic Stress and Its Interplay With Fluctuating Dark/Light Conditions. Front. Plant Sci. 2021, 12, 631810. [Google Scholar] [CrossRef] [PubMed]
- Reimer-Michalski, E.M.; Conrath, U. Innate Immune Memory in Plants. Semin. Immunol. 2016, 28, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Desveaux, D.; Singer, A.U.; Dangl, J.L. Type III Effector Proteins: Doppelgangers of Bacterial Virulence. Curr. Opin. Plant Biol. 2006, 9, 376–382. [Google Scholar] [CrossRef]
- Kim, J.-G.; Taylor, K.W.; Hotson, A.; Keegan, M.; Schmelz, E.A.; Mudgett, M.B. XopD SUMO Protease Affects Host Transcription, Promotes Pathogen Growth, and Delays Symptom Development in Xanthomonas-Infected Tomato Leaves. Plant Cell 2008, 20, 1915–1929. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-G.; Stork, W.; Mudgett, M.B. Xanthomonas Type III Effector XopD Desumoylates Tomato Transcription Factor SlERF4 to Suppress Ethylene Responses and Promote Pathogen Growth. Cell Host Microbe 2013, 13, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segonzac, C.; Newman, T.E.; Choi, S.; Jayaraman, J.; Choi, D.S.; Jung, G.Y.; Cho, H.; Lee, Y.K.; Sohn, K.H. A Conserved EAR Motif Is Required for Avirulence and Stability of the Ralstonia Solanacearum Effector PopP2 in Planta. Front. Plant Sci. 2017, 8, 1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, S.; Kumari, P.; Lapin, D.; Griebel, T.; Hickman, R.; Guo, W.; Zhang, R.; Parker, J.E.; Beynon, J.; Denby, K.; et al. Downy Mildew Effector HaRxL21 Interacts with the Transcriptional Repressor TOPLESS to Promote Pathogen Susceptibility. PLoS Pathog. 2020, 16, e1008835. [Google Scholar] [CrossRef]
- Navarrete, F.; Gallei, M.; Kornienko, A.E.; Saado, I.; Khan, M.; Chia, K.-S.; Darino, M.A.; Bindics, J.; Djamei, A. TOPLESS Promotes Plant Immunity by Repressing Auxin Signaling and Is Targeted by the Fungal Effector Naked1. Plant Commun. 2022, 3, 100269. [Google Scholar] [CrossRef]
- Salvi, P.; Manna, M.; Kaur, H.; Thakur, T.; Gandass, N.; Bhatt, D.; Muthamilarasan, M. Phytohormone Signaling and Crosstalk in Regulating Drought Stress Response in Plants. Plant Cell Rep. 2021, 40, 1305–1329. [Google Scholar] [CrossRef]
- Lu, H. Dissection of Salicylic Acid-Mediated Defense Signaling Networks. Plant Signal. Behav. 2009, 4, 713–717. [Google Scholar] [CrossRef]
- Osorio, S.; Scossa, F.; Fernie, A.R. Molecular Regulation of Fruit Ripening. Front. Plant Sci. 2013, 4, 198. [Google Scholar] [CrossRef] [PubMed]
Functional Category | Total Number of Proteins | Number of Plant Species | Plant Species | Number of LxLxL Sites | Number of DLNxxP Sites |
---|---|---|---|---|---|
Growth morphology | 44 | 13 | Arabidopsis lyrata, Arabidopsis thaliana, Boechera stricta, Brassica rapa, Eutrema salsugineum, Glycine max, Malus domestica, Medicago truncatula, Oryza sativa, Prunus persica, Solanum lycopersicum, Sphagnum fallax, Triticum aestivum | 34 | 19 |
Metabolism homeostasis | 27 | 4 | Arabidopsis thaliana, Catharanthus roseus, Solanum lycopersicum, Solanum tuberosum | 28 | 5 |
Abiotic stress response | 21 | 6 | Arabidopsis thaliana, Ipomoea batatas, Oryza sativa, Petunia hybrida cv. ‘Mitchell’, Solanum tuberosum, Zea mays | 18 | 11 |
Biotic stress response | 53 | 16 | Arabidopsis lyrata, Arabidopsis thaliana, Boechera stricta, Brassica rapa, Elaeis guineensis, Eutrema salsugineum, Glycine max, Ipomoea batatas, Nicotiana benthamiana, Oryza sativa, Pinus taeda, Prunus persica, Solanum tuberosum, Sphagnum fallax, Triticum aestivum, Zea mays | 55 | 14 |
Hormonal pathway signalling | 25 | 8 | Arabidopsis thaliana, Malus domestica, Nicotiana tabacum, Oryza sativa, Solanum lycopersicum, Solanum tuberosum, Ustilago maydis, Zea mays | 26 | 7 |
Fertility | 4 | 2 | Arabidopsis thaliana, Oryza sativa | 4 | 2 |
Ripening | 13 | 2 | Prunus persica, Solanum lycopersicum | 10 | 8 |
Gene Name | Gene Identifiers | EAR Motif Sequence | Start | Region | Size | Plant Species | Function | Ref. |
---|---|---|---|---|---|---|---|---|
488615 | 488615 | LLLAL | 463 | C | 506 | Arabidopsis lyrata | G, B | [7] |
AGL15 | AT5G13790 | LQLGL | 214 | C | 271 | Arabidopsis thaliana | F | [11] |
AtERF4 | AT3G15210 | LELSL, LDLDLNLPP | 127, 209 | C, C | 222 | Arabidopsis thaliana | B, H | [12] |
AtERF7 | AT3G20310 | DLNFPP | 218 | C | 244 | Arabidopsis thaliana | A, H | [12] |
AtMYB4 | AT4G38620 | LNLEL | 198 | M | 282 | Arabidopsis thaliana | A | [12] |
AtMYB73-like S22 | PG0024983 | LSLSL, LGLGL | 205, 344 | M, C | 370 | Solanum tuberosum | M, B | [13] |
AtTCP20 | AT3G27010 | LELGL | 252 | C | 314 | Arabidopsis thaliana | G | [14] |
AtWOX5 | AT3G11260 | LDLRL | 175 | C | 182 | Arabidopsis thaliana | G, H | [15] |
AtWOX7 | AT5G05770 | LDLRL | 181 | C | 122 | Arabidopsis thaliana | G | [15] |
AtWUS | AT2G17950 | LELRL | 287 | C | 292 | Arabidopsis thaliana | M | [15] |
AtZP1 | AT3G50260 | LDLELRL | 193 | C | 204 | Arabidopsis thaliana | G | [16] |
AUX/IAA | AT4G14560 | LRLGL | 14 | N | 168 | Arabidopsis thaliana | H | [12] |
AZF2 | AT3G19580 | LALCL, DLNLP | 71, 224 | M, C | 273 | Arabidopsis thaliana | A | [12] |
bHLH11 | AT4G36060 | LDLDL, LKLEL | 208, 231 | M, C | 287 | Arabidopsis thaliana | M | [17] |
Bostr.26527s0463.1 | Bostr.26527s0463.2 | LLLAL | 487 | C | 530 | Boechera stricta | G, B | [7] |
Bra013973 | Bra013973 | LLLAL | 324 | C | 360 | Brassica rapa | G, B | [7] |
BZR1 | AT1G75080 | LELTL | 325 | C | 336 | Arabidopsis thaliana | G, H | [18] |
DAZ1 | AT2G17180 | DLNVP, LDLRLGL | 247, 264 | C, C | 270 | Arabidopsis thaliana | G, F | [19] |
DAZ2 | AT4G35280 | DLNVPP, LDLRLGL | 258, 278 | C, C | 284 | Arabidopsis thaliana | G, F | [19] |
DEAR1 | AT3G50260 | DLNKLP | 136 | C | 153 | Arabidopsis thaliana | A, B | [20] |
EgMYB4 | KT778616 | LNLEL | 178 | C | 237 | Elaeis guineensis | B | [21] |
ERF3 | AT1G50640 | DLNFPP | 200 | C | 225 | Arabidopsis thaliana | A, B | [12] |
GmERF4 | ACE76905 | LDLNLAP, DLNHPP | 115, 212 | M, C | 222 | Glycine max | B | [22] |
GmJAGGED1 | Glyma20g25000.1 | DLNNLP | 9 | N | 256 | Glycine max | G | [23] |
HSI2 | AT2G30470 | DLNSDP | 729 | C | 790 | Arabidopsis thaliana | H | [12] |
IAA1 | AT4G14560 | LRLGL | 14 | N | 168 | Arabidopsis thaliana | H | [24] |
IAA16 | AT3G04730 | LRLGL, LKLNL | 9, 38 | N, N | 236 | Arabidopsis thaliana | H | [24] |
IAA19 | AT2G33310 | LRLGL | 9 | N | 197 | Arabidopsis thaliana | H | [24] |
IAA27 | AT4G29080 | LRLGL | 45 | N | 305 | Arabidopsis thaliana | H | [24] |
IAA28 | AT5G25890 | LELRL | 7 | N | 175 | Arabidopsis thaliana | G, H | [24] |
IAA3 | AT1G04240 | LLLLL, LRLGL | 23, 112 | N, M | 289 | Arabidopsis thaliana | H | [24] |
IAA4 | AT5G43700 | LRLGL | 18 | N | 186 | Arabidopsis thaliana | H | [24] |
IAA5 | AT1G15580 | LRLGL | 15 | N | 163 | Arabidopsis thaliana | H | [24] |
IAA6 | AT1G52830 | LRLGL | 13 | N | 189 | Arabidopsis thaliana | H | [24] |
IAA7 | AT3G23050 | LCLGL, LMLNL | 13, 44 | N, N | 287 | Arabidopsis thaliana | G, H | [8] |
IbERF4 | ARS72978 | LELDL, LNLDLNLAP | 112, 215 | M, C | 227 | Ipomoea batatas | A, B | [25] |
JAZ8 | AT1G30135 | LELRL | 9 | N | 131 | Arabidopsis thaliana | H | [26] |
Jsi1 | UMAG_01236 | DLNELP | 39 | N | 641 | Ustilago maydis | H | [27] |
MdMYB6 | MDP0000198015 | LSLSL | 217 | M | 312 | Malus domestica | G, H | [28] |
MtRSD | AFQ94047 | LDLELRL | 129 | C | 151 | Medicago truncatula | G | [29] |
MYB101-like S18 | PG0013897 | LSLTL | 237 | M | 476 | Solanum tuberosum | M, B | [13] |
MYB101-like S18 | PG0028949 | LPLTL | 200 | M | 484 | Solanum tuberosum | M, B | [13] |
MYB108-like S20 | PG0008761 | LILEL | 89 | M | 297 | Solanum tuberosum | M, B | [13] |
MYB108-like S20 | PG0004612 | LILQL | 68 | M | 230 | Solanum tuberosum | M, B | [13] |
MYB108-like S20 | PG0027157 | LILEL | 104 | M | 324 | Solanum tuberosum | M, B | [13] |
MYB108-like S20 | PG1004611 | LILQL | 68 | M | 234 | Solanum tuberosum | M, B | [13] |
MYB108-like S20 | PG2004611 | LILQL | 100 | M | 240 | Solanum tuberosum | M, B | [13] |
MYB15-like | PG0015087 | LILNL | 77 | M | 243 | Solanum tuberosum | M, B | [13] |
MYB15-like S2 | PG0020071 | LDLSL, LMLEL | 220, 251 | C, C | 258 | Solanum tuberosum | M, B | [13] |
MYB17-like S9 | PG0000027 | LQLLL | 278 | C | 309 | Solanum tuberosum | M, B | [13] |
MYB17-like S9 | PG0021654 | LQLLL | 274 | C | 319 | Solanum tuberosum | M, B | [13] |
MYB3-like S4 | PG0030548 | DLNSLP | 173 | C | 178 | Solanum tuberosum | M, B | [13] |
MYB32-like S4 | PG0006176 | LNLEL | 188 | M | 254 | Solanum tuberosum | M, B | [13] |
MYB4-like S4 | PG0013215 | LNLEL | 189 | M | 268 | Solanum tuberosum | M, B | [13] |
MYB41-like | PG0020012 | LELYL | 232 | C | 243 | Solanum tuberosum | M, B | [13] |
MYB44-like S22 | PG0003316 | LCLSL | 206 | M | 320 | Solanum tuberosum | M, B | [13] |
MYB48-like | PG0015536 | LVLEL | 72 | M | 218 | Solanum tuberosum | M, B | [13] |
MYB62-like S20 | PG0005641 | LILEL | 88 | M | 278 | Solanum tuberosum | M, B | [13] |
MYB62-like S20 | PG0014550 | LILEL | 84 | M | 273 | Solanum tuberosum | M, B | [13] |
MYB70 | Solyc04g078420 | LRLSL | 215 | M | 309 | Solanum lycopersicum | R | [30] |
MYB70-like S22 | PG0044858 | LSLSL | 227 | C | 302 | Solanum tuberosum | M, B | [13] |
NbCD1 | BAD99476 | LDLSL, LDLNLPP | 122, 221 | M, C | 231 | Nicotiana benthamiana | B | [12] |
NIMIN1 | AT1G02450 | LDLNLAL | 136 | C | 142 | Arabidopsis thaliana | B, H | [12] |
NRR | Os01g0130200 | DLNVEP | 107 | C | 127 | Oryza sativa | B, H | [12] |
NtERF3 | BAJ72664 | LELDL, LDLNLAP | 114, 215 | M, C | 225 | Nicotiana benthamiana | B | [31] |
OsERF3 | BAB03248 | LDLDL, DLNRPP | 129, 226 | M, C | 235 | Oryza sativa | A, B | [32] |
OsWOX1 | Os04t0663600-01 | LELTL | 270 | C | 289 | Oryza sativa | F | [15] |
OsWOX9 | CAJ84144 | LELRL | 191 | C | 200 | Oryza sativa | G | [15] |
PpEIL1 | ABK35085 | LKLGL | 215 | M | 601 | Prunus persica | R | [33] |
PpERF3b | Ppa010804m | DLNLPP | 201 | C | 235 | Prunus persica | G, B | [34] |
PtMYB14 | DQ399056 | LNLDL | 164 | C | 192 | Pinus taeda | B | [35] |
Q | UPQ43659 | LDLDL | 292 | M | 447 | Triticum aestivum | G | [9] |
RAP2.1 | AT1G46768 | DLNQIP | 143 | C | 153 | Arabidopsis thaliana | A | [36] |
SlEAD1 | Solyc12g099500 | LVLLLVLFL | 97 | C | 119 | Solanum lycopersicum | G, H | [37] |
SlERF.F12 | Solyc02g077840 | LTLDLNLP, DLNEPP | 79, 145 | M, C | 154 | Solanum lycopersicum | R | [38] |
SlERF10-1 | Solyc10g006130.1.1 | DLNFPP | 197 | C | 221 | Solanum lycopersicum | G | [10] |
SlERF10-2 | Solyc10g009110.1.1 | LDLSL, LNLDLNFPP | 125, 210 | M, C | 222 | Solanum lycopersicum | G | [10] |
SlERF12-1 | Solyc12g005960.1.1 | DLNFPP | 175 | C | 193 | Solanum lycopersicum | G | [10] |
SlERF2-10 | Solyc02g093130.1.1 | DLNLKP | 118 | C | 133 | Solanum lycopersicum | G, M | [10] |
SlERF2-6 | Solyc02g077840.1.1 | LPLLL | 75 | C | 99 | Solanum lycopersicum | G, R | [10] |
SlERF3-16 | Solyc03g117230.1.1 | LDLNL | 243 | C | 252 | Solanum lycopersicum | G, R | [10] |
SlERF3-4 | Solyc03g006320.1.1 | LDLSL, DLNLLP | 119, 207 | M, C | 216 | Solanum lycopersicum | G, R | [10] |
SlERF36 | NP_001355161 | DLNFPP | 197 | C | 221 | Solanum lycopersicum | G | [39] |
SlERF4-1 | Solyc04g007180.1.1 | LDLEL | 272 | C | 350 | Solanum lycopersicum | G, R | [10] |
SlERF4-10 | Solyc04g078640.1.1 | DLNEYP | 134 | C | 148 | Solanum lycopersicum | G, R | [10] |
SlERF4-11 | Solyc04g080910.1.1 | DLNFPP | 240 | C | 249 | Solanum lycopersicum | G, R | [10] |
SlERF5-8 | Solyc05g052030.1.1 | LTLEL | 8 | N | 201 | Solanum lycopersicum | G, R | [10] |
SlERF7-2 | Solyc07g049490.1.1 | DLNLPP | 174 | C | 198 | Solanum lycopersicum | G, R | [10] |
SlERF7-3 | Solyc07g053740.1.1 | LELDL, LDLDLNLAP | 121, 213 | M, C | 225 | Solanum lycopersicum | G, R | [10] |
SlERF7-5 | Solyc07g054220.1.1 | DLNLP | 214 | C | 240 | Solanum lycopersicum | G, R | [10] |
SlERF9-1 | Solyc09g009240.1.1 | DLNFLP | 88 | M | 202 | Solanum lycopersicum | G | [10] |
SlERF9-10 | Solyc09g091950.1.1 | LGLFL | 123 | M | 419 | Solanum lycopersicum | G | [10] |
SMXL7 | AT2G29970 | LDLNLP | 854 | C | 1002 | Arabidopsis thaliana | G | [40] |
Sphfalx0198s0025.1 | Sphfalx0198s0025.2 | LLLSL | 75 | C | 88 | Sphagnum fallax | G, B | [7] |
Sphfalx0442s0002.1 | Sphfalx0442s0002.2 | LLLSL | 396 | C | 433 | Sphagnum fallax | G, B | [7] |
StERF3 | ABK96798 | LDLRL, LNLDLNFPP | 126, 211 | M, C | 223 | Solanum tuberosum | A, B, H | [41] |
StZFP1 | ABK78777 | LALCL, DLNMP | 50, 223 | N, C | 266 | Solanum tuberosum | A, B | [42] |
TaJAZ1 | QBQ83006 | LELSLGLSL | 5 | N | 476 | Triticum aestivum | B | [43] |
TaWOX9 | EMS65007 | LELRL | 140 | C | 173 | Triticum aestivum | G | [15] |
Thhalv10015535m | Thhalv10015535m | LLLAL | 454 | C | 549 | Eutrema salsugineum | G, B | [7] |
TIE1 | AT4G28840 | LDLELRL | 187 | C | 193 | Arabidopsis thaliana | G | [44] |
ZAT10 | AT1G27730 | DLNIPP | 190 | C | 227 | Arabidopsis thaliana | A | [12] |
ZAT12 | AT5G59820 | LDLSL, LNLKLEL | 141, 151 | C, C | 162 | Arabidopsis thaliana | A, B | [12] |
ZAT4 | AT2G45120 | DLNLP | 295 | C | 314 | Arabidopsis thaliana | G | [45] |
ZAT7 | AT3G46090 | LDLDL | 144 | C | 168 | Arabidopsis thaliana | A, B | [46] |
ZAT9 | AT3G60580 | DLNLP | 271 | C | 288 | Arabidopsis thaliana | G | [45] |
ZCT1 | AJ632082 | LDLNLTP | 153 | C | 178 | Catharanthus roseus | M | [12] |
ZCT2 | AJ632083 | LDLNLTP | 164 | C | 190 | Catharanthus roseus | M | [12] |
ZCT3 | AJ632084 | LALCL, DLNLP | 62, 216 | N, C | 259 | Catharanthus roseus | M | [12] |
ZFT1 | AB186899 | LALCL, DLNIP | 53, 211 | N, C | 253 | Nicotiana tabacum | H | [12] |
ZmCLA4 | GRMZM2G135019 | LVLEL | 409 | C | 413 | Zea mays | H | [47] |
ZmJAZ15 | GRMZM2G173596 | LALEL | 156 | C | 160 | Zea mays | A, B | [48] |
ZmJAZ23 | GRMZM2G143402 | LSLSL | 43 | N | 230 | Zea mays | A, B | [48] |
ZmJAZ26 | GRMZM2G114681 | LPLPLLL | 25 | N | 410 | Zea mays | A, B | [48] |
ZmJAZ34 | Zm00001d041045 | LCLLLQL | 178 | M | 206 | Zea mays | A, B | [48] |
ZmJAZ4 | GRMZM2G024680 | LALRL | 212 | C | 216 | Zea mays | A, B | [48] |
ZmJAZ5 | GRMZM2G145412 | LKLAL | 178 | C | 182 | Zea mays | A, B | [48] |
ZmJAZ6 | GRMZM2G145458 | LTLTL | 152 | C | 162 | Zea mays | A, B | [48] |
ZPT2-3 | DD138888 | DLNIP | 210 | C | 253 | Petunia x hybrida | A | [12] |
Plant Growth/Morphology | Metabolism/Homeostasis | Abiotic Stress Response | Biotic Stress Response | Hormonal Pathway/Signaling | Fertility | Ripening | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | N | M | C | N | M | C | N | M | C | N | M | C | N | M | C | N | M | C | N | M | C |
DLNxP | 4 | 1 | 3 | 1 | 1 | 1 | 1 | ||||||||||||||
DLNxxP | 1 | 1 | 10 | 2 | 6 | 7 | 1 | 3 | 1 | 5 | |||||||||||
LDLNLP | 1 | ||||||||||||||||||||
LDLNLxP | 2 | 1 | 2 | ||||||||||||||||||
LxLDLNLP | 1 | ||||||||||||||||||||
LxLDLNxxP | 2 | 2 | 3 | 1 | 1 | ||||||||||||||||
LxLxL | 4 | 6 | 15 | 1 | 16 | 9 | 2 | 5 | 6 | 2 | 20 | 22 | 15 | 3 | 4 | 2 | 1 | 4 | 3 | ||
LxLxLxL | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | |||||||||||||
LxLxLxLxL | 1 | 1 | 1 | ||||||||||||||||||
Motifs/location | 5 | 7 | 38 | 1 | 16 | 14 | 3 | 6 | 18 | 4 | 22 | 37 | 16 | 3 | 11 | 0 | 0 | 6 | 1 | 5 | 10 |
Total motifs | 50 | 31 | 27 | 63 | 30 | 6 | 16 | ||||||||||||||
%motifs/location | 10 | 14 | 76 | 3 | 52 | 45 | 11 | 22 | 67 | 6 | 35 | 59 | 53 | 10 | 37 | 0 | 0 | 100 | 6 | 31 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, V.; Kirzinger, M.W.; Kagale, S. Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes 2023, 14, 270. https://doi.org/10.3390/genes14020270
Chow V, Kirzinger MW, Kagale S. Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes. 2023; 14(2):270. https://doi.org/10.3390/genes14020270
Chicago/Turabian StyleChow, Vanessa, Morgan W. Kirzinger, and Sateesh Kagale. 2023. "Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants" Genes 14, no. 2: 270. https://doi.org/10.3390/genes14020270
APA StyleChow, V., Kirzinger, M. W., & Kagale, S. (2023). Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes, 14(2), 270. https://doi.org/10.3390/genes14020270