The Supersymmetry Genetic Code Table and Quadruplet Symmetries of DNA Molecules Are Unchangeable and Synchronized with Codon-Free Energy Mapping during Evolution
Abstract
:1. Introduction
2. Material and Methods
2.1. Characteristic of the SSyGC Table
2.2. Characteristic of DNA Quadruplet Symmetries
2.3. Free Energy Values Incorporated in the SSyGC Table and in DNA Quadruplets
3. Results
- -
- In the first column, the summary of the free energy of all codons of the SSyGC table (A + U-rich 24 codons, C + G-rich 8 codons) is 115.2 kcal/mol (56 above and 59.2 below axis of mirror symmetry).
- -
- In the second column, the summary of the free energy of all codons of the SSyGC table (A + U-rich 8 codons, C + G-rich 24 codons) is 141.8 kcal/mol (71.5 above and 70.3 below axis of mirror symmetry).
- -
- The free energy of all codons of the SSyGC table is 257 kcal/mol.
- -
- In the whole genetic code, the free energy of all 32 weak A + U-rich codons is 108.6 kcal/mol, and of all strong 32 C + G-rich codons 148.4 kcal/mol (27% higher).
- -
- All 16 symmetrical codons in the direct–complement pair of boxes have completely identical free energy of codons (e.g., AUA 2.8 kcal/mol–UAU 2.8 kcal/mol; CCC 5.5 kcal/mol–GGG 5.5 kcal/mol) (Figure 2).
- -
- The free energy difference between codons in each box which has the third base A and U or C and G in the upper and lower half of genetic code are completely identical, which coincide with the horizontal mirror symmetry axis of the SSyGC table (Figure 4b,c).
- -
- The sum of the free energy of all codons in kcal/mol with respect to the horizontal mirror symmetry axis of the SSyGC table is almost identical above and below mirror symmetry axis (127.5:129.5) (Figure 4d). The minimal difference of 2 is probably a technical mistake.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nöther, E. Invariante Variantionsprobleme. In Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse; University Göttingen: Göttingen, Germany, 1918; pp. 235–257. [Google Scholar]
- Schrödinger, E. What Is Life? Cambridge University Press: Cambridge, UK, 1944. [Google Scholar]
- Monod, J. On symmetry and function in biological systems. In Selected Papers in Molecular Biology by Jacques Monod; Ullman, A., Ed.; Academic Press: New York, NY, USA, 1978. [Google Scholar]
- Gross, D.J. The role of symmetry in fundamental physics. Proc. Natl. Acad. Sci. USA 1996, 93, 14256–14259. [Google Scholar] [CrossRef] [PubMed]
- Rosandić, M.; Vlahović, I.; Pilaš, I.; Glunčić, M.; Paar, V. An Explanation of Exceptions from Chargaff’s Second Parity Rule/Strand Symmetry of DNA Molecules. Genes 2022, 13, 1929. [Google Scholar] [CrossRef] [PubMed]
- Rosandić, M.; Paar, V. Standard Genetic Code vs. Supersymmetry Genetic code—Alphabetical table vs. physicochemical table. BioSystems 2022, 218, 104695. [Google Scholar] [CrossRef] [PubMed]
- Rosandić, M.; Paar, V. The Evolution of Life Is a Road with the DNA Quadruplet Symmetry and the Supersymmetry Genetic Code. Int. J. Mol. Sci. 2023, 24, 12029. [Google Scholar] [CrossRef] [PubMed]
- Breslauer, K.J.; Frank, R.; Blocker, H.; Marky, L.A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 1986, 83, 3746–3750. [Google Scholar] [CrossRef] [PubMed]
- Klump, H.H.; Volker, J.; Breslauer, K.J. Energy Mapping of the Genetic Code and Genomic Domains: Implications for Code Evolution and Molecular Darwinism; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Koonin, E.V.; Novozhilov, A.S. Origin and evolution of the genetic code: The universal enigma. IUBMB Life 2009, 61, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Are there laws of genome evolution? PLoS Comput. Biol. 2011, 7, 1002173. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V. Frozen accident—Pushing 50: Stereochemistry, expansion, and chance in the evolution of the genetic code. Life 2017, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Crick, F.H. Evolution of the genetic code. J. Mol. Biol. 1968, 38, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Bashford, J.D.; Tsohantjis, I.; Jarvis, P.D. A supersymmetric model for the evolution on the genetic code. Proc. Natl. Acad. Sci. USA 1998, 95, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Aldana, M.; Cazarez-Bush, F.; Cocho, G.; Martinez-Mekler, G. Primordial synthesis machines and the origin of the genetic code. Phys. A Stat. Mech. Its Appl. 1998, 257, 119–127. [Google Scholar] [CrossRef]
- Aldana-Gonzalez, M.; Cocho, G.; Larralde, H.; Martinez-Mekler, G. Translocat properties of primitive molecular machines and their relevance to the structure of the genetic code. J. Theor. Biol. 2003, 220, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Greive, S.J.; von Hippel, P.H. Thinking quantitatively about transcriptional regulation. Nat. Rev. Mol. Cell Biol. 2005, 6, 221–232. [Google Scholar] [CrossRef]
- Martínez-Mekler, G.; Aldana, M.; Cázarez-Bush, F.; Garcia-Pelayo, R.; Cocho, G. Primitive molecular machine scenario for the origin of the three base codon composition. Origin of life and evolution of the biosphere. J. Int. Soc. Study Orig. Life 1999, 29, 203–214. [Google Scholar]
- Freeland, S.J.; Hurst, I.D. The genetic code is one in a million. J. Mol. Evol. 1998, 47, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Uhlenbeck, O.C.; Schrader, J.M. Evolutionary tuning impacts the design of the bacterial tRNAs for the incorporation of unnatural amino acids by ribosoms. Curr. Opin. Chem. Biol. 2018, 46, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Fredens, J.; Wang, K.; de la Torre, D.; Funke, L.F.H.; Robertson, W.E.; Christova, Y.; Chia, T.; Schmied, W.H.; Dunkelmann, D.L.; Beranek, V.; et al. Total synthesis of Escherichia coli with a recoded genome. Nature 2019, 569, 514–518. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosandić, M.; Paar, V. The Supersymmetry Genetic Code Table and Quadruplet Symmetries of DNA Molecules Are Unchangeable and Synchronized with Codon-Free Energy Mapping during Evolution. Genes 2023, 14, 2200. https://doi.org/10.3390/genes14122200
Rosandić M, Paar V. The Supersymmetry Genetic Code Table and Quadruplet Symmetries of DNA Molecules Are Unchangeable and Synchronized with Codon-Free Energy Mapping during Evolution. Genes. 2023; 14(12):2200. https://doi.org/10.3390/genes14122200
Chicago/Turabian StyleRosandić, Marija, and Vladimir Paar. 2023. "The Supersymmetry Genetic Code Table and Quadruplet Symmetries of DNA Molecules Are Unchangeable and Synchronized with Codon-Free Energy Mapping during Evolution" Genes 14, no. 12: 2200. https://doi.org/10.3390/genes14122200
APA StyleRosandić, M., & Paar, V. (2023). The Supersymmetry Genetic Code Table and Quadruplet Symmetries of DNA Molecules Are Unchangeable and Synchronized with Codon-Free Energy Mapping during Evolution. Genes, 14(12), 2200. https://doi.org/10.3390/genes14122200