Complete Mitochondrial DNA Genome Variation in the Swedish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Haplotype Generation
2.3. Data Analysis
3. Results
3.1. Overall Performance
3.2. Variants and Heteroplasmy
3.3. Population Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, K.; Melton, T. Forensic Mitochondrial DNA Analysis of 116 Casework Skeletal Samples. J. Forensic Sci. 2007, 52, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Melton, T.; Dimick, G.; Higgins, B.; Lindstrom, L.; Nelson, K. Forensic Mitochondrial DNA Analysis of 691 Casework Hairs. J. Forensic Sci. 2005, 50, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Edson, S.M.; Ross, J.P.; Coble, M.D.; Parsons, T.J.; Barritt, S.M. Naming the Dead–Confronting the Realities of Rapid Identification of Degraded Skeletal Remains. Forensic Sci. Rev. 2004, 16, 63–90. [Google Scholar] [PubMed]
- Holland, M.M.; Parsons, T.J. Mitochondrial DNA Sequence Analysis–Validation and Use for Forensic Casework. Forensic Sci. Rev. 1999, 11, 21–50. [Google Scholar]
- Berger, C.; Parson, W. Mini-midi-mito: Adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples. Forensic Sci. Int. Genet. 2009, 3, 149–153. [Google Scholar] [CrossRef]
- Parson, W.; Dür, A. EMPOP—A forensic mtDNA database. Forensic Sci. Int. Genet. 2007, 1, 88–92. [Google Scholar] [CrossRef]
- Just, R.S.; Scheible, M.K.; Fast, S.A.; Sturk-Andreaggi, K.; Röck, A.W.; Bush, J.M.; Higginbotham, J.L.; Peck, M.A.; Ring, J.D.; Huber, G.E.; et al. Full mtGenome reference data: Development and characterization of 588 forensic-quality haplotypes representing three U.S. populations. Forensic Sci. Int. Genet. 2015, 14, 141–155. [Google Scholar] [CrossRef]
- King, J.L.; LaRue, B.L.; Novroski, N.M.; Stoljarova, M.; Seo, S.B.; Zeng, X.; Warshauer, D.H.; Davis, C.P.; Parson, W.; Sajantila, A.; et al. High-quality and high-throughput massively parallel sequencing of the human mitochondrial genome using the Illumina MiSeq. Forensic Sci. Int. Genet. 2014, 12, 128–135. [Google Scholar] [CrossRef]
- Bodner, M.; Amory, C.; Olivieri, A.; Gandini, F.; Cardinali, I.; Lancioni, H.; Huber, G.; Xavier, C.; Pala, M.; Fichera, A.; et al. Helena’s Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian mtDNA Control Region Haplotype in an Extended Italian Population Sample. Int. J. Mol. Sci. 2022, 23, 6725. [Google Scholar] [CrossRef]
- Holt, C.L.; Stephens, K.M.; Walichiewicz, P.; Fleming, K.D.; Forouzmand, E.; Wu, S. Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software. Genes 2021, 12, 599. [Google Scholar] [CrossRef]
- Cihlar, J.C.; Amory, C.; Lagace, R.; Roth, C.; Parson, W.; Budowle, B. Developmental Validation of a MPS Workflow with a PCR-Based Short Amplicon Whole Mitochondrial Genome Panel. Genes 2020, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.; Sturk-Andreaggi, K.; Daniels-Higginbotham, J.; Oliver, R.S.; Barritt-Ross, S.; McMahon, T.P. Performance evaluation of a mitogenome capture and Illumina sequencing protocol using non-probative, case-type skeletal samples: Implications for the use of a positive control in a next-generation sequencing procedure. Forensic Sci. Int. Genet. 2017, 31, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.A.; Sturk-Andreaggi, K.; Thomas, J.T.; Oliver, R.S.; Barritt-Ross, S.; Marshall, C. Developmental validation of a Nextera XT mitogenome Illumina MiSeq sequencing method for high-quality samples. Forensic Sci. Int. Genet. 2018, 34, 25–36. [Google Scholar] [CrossRef]
- Cuenca, D.; Battaglia, J.; Halsing, M.; Sheehan, S. Mitochondrial Sequencing of Missing Persons DNA Casework by Implementing Thermo Fisher’s Precision ID mtDNA Whole Genome Assay. Genes 2020, 11, 1303. [Google Scholar] [CrossRef] [PubMed]
- Scientific Working Group on DNA Analysis Methods Interpretation Guidelines for Mitochondrial DNA Analysis by Forensic DNA Testing Laboratories (23 April 2019). Available online: https://www.swgdam.org/_files/ugd/4344b0_f61de6abf3b94c52b28139bff600ae98.pdf (accessed on 1 September 2023).
- Lembring, M.; Oven, M.; Montelius, M.; Allen, M. Mitochondrial DNA analysis of Swedish population samples. Int. J. Leg. Med. 2013, 127, 1097–1099. [Google Scholar] [CrossRef] [PubMed]
- Tillmar, A.O.; Coble, M.D.; Wallerström, T.; Holmlund, G. Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations. Int. J. Leg. Med 2010, 124, 91–98. [Google Scholar] [CrossRef]
- Taylor, C.R.; Kiesler, K.M.; Sturk-Andreaggi, K.; Ring, J.D.; Parson, W.; Schanfield, M.; Vallone, P.M.; Marshall, C. Platinum-Quality Mitogenome Haplotypes from United States Populations. Genes 2020, 11, 1290. [Google Scholar] [CrossRef]
- Karlsson, A.O.; Wallerström, T.; Götherström, A.; Holmlund, G. Y-chromosome diversity in Sweden–A long-time perspective. Eur. J. Hum. Genet. EJHG 2006, 14, 963–970. [Google Scholar] [CrossRef]
- Zerjal, T.; Beckman, L.; Beckman, G.; Mikelsaar, A.V.; Krumina, A.; Kucinskas, V.; Hurles, M.E.; Tyler-Smith, C. Geographical, Linguistic, and Cultural Influences on Genetic Diversity: Y-Chromosomal Distribution in Northern European Populations. Mol. Biol. Evol. 2001, 18, 1077–1087. [Google Scholar] [CrossRef]
- Salmela, E.; Lappalainen, T.; Liu, J.; Sistonen, P.; Andersen, P.M.; Schreiber, S.; Savontaus, M.; Czene, K.; Lahermo, P.; Hall, P.; et al. Swedish Population Substructure Revealed by Genome-Wide Single Nucleotide Polymorphism Data. PLoS ONE 2011, 6, e16747. [Google Scholar] [CrossRef]
- Humphreys, K.; Grankvist, A.; Leu, M.; Hall, P.; Liu, J.; Ripatti, S.; Rehnström, K.; Groop, L.; Klareskog, L.; Ding, B.; et al. The Genetic Structure of the Swedish Population. PLoS ONE 2011, 6, e22547. [Google Scholar] [CrossRef]
- Lappalainen, T.; Hannelius, U.; Salmela, E.; Von Döbeln, U.; Lindgren, C.M.; Huoponen, K.; Savontaus, M.; Kere, J.; Lahermo, P. Population Structure in Contemporary Sweden—A Y-Chromosomal and Mitochondrial DNA Analysis. Ann. Hum. Genet. 2009, 73, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Tambets, K.; Rootsi, S.; Kivisild, T.; Help, H.; Serk, P.; Loogväli, E.; Tolk, H.; Reidla, M.; Metspalu, E.; Pliss, L.; et al. The Western and Eastern Roots of the Saami—The Story of Genetic “Outliers” Told by Mitochondrial DNA and Y Chromosomes. Am. J. Hum. Genet. 2004, 74, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Ameur, A.; Dahlberg, J.; Olason, P.; Vezzi, F.; Karlsson, R.; Martin, M.; Viklund, J.; Kähäri, A.K.; Lundin, P.; Che, H.; et al. SweGen: A whole-genome data resource of genetic variability in a cross-section of the Swedish population. Eur. J. Hum. Genet. EJHG 2017, 25, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Lao, O.; Lu, T.T.; Nothnagel, M.; Junge, O.; Freitag-Wolf, S.; Caliebe, A.; Balascakova, M.; Bertranpetit, J.; Bindoff, L.A.; Comas, D.; et al. Correlation between Genetic and Geographic Structure in Europe. Curr. Biol. 2008, 18, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Novembre, J.; Johnson, T.; Bryc, K.; Kutalik, Z.; Boyko, A.R.; Auton, A.; Indap, A.; King, K.S.; Bergmann, S.; Nelson, M.R.; et al. Genes mirror geography within Europe. Nature 2008, 456, 274. [Google Scholar] [CrossRef]
- McEvoy, B.P.; Montgomery, G.W.; McRae, A.F.; Ripatti, S.; Perola, M.; Spector, T.D.; Cherkas, L.; Ahmadi, K.R.; Boomsma, D.; Willemsen, G.; et al. Geographical structure and differential natural selection among North European populations. Genome Res. 2009, 19, 804–814. [Google Scholar] [CrossRef]
- Sturk-Andreaggi, K.; Ring, J.D.; Ameur, A.; Gyllensten, U.; Bodner, M.; Parson, W.; Marshall, C.; Allen, M. The Value of Whole-Genome Sequencing for Mitochondrial DNA Population Studies: Strategies and Criteria for Extracting High-Quality Mitogenome Haplotypes. Int. J. Mol. Sci. 2022, 23, 2244. [Google Scholar] [CrossRef]
- Marshall, C.; Parson, W. Interpreting NUMTs in forensic genetics: Seeing the forest for the trees. Forensic Sci. Int. Genet. 2021, 53, 102497. [Google Scholar] [CrossRef]
- Woerner, A.E.; Cihlar, J.C.; Smart, U.; Budowle, B. Numt identification and removal with RtN. Bioinformatics 2020, 36, 5115–5116. [Google Scholar] [CrossRef]
- Cihlar, J.C.; Strobl, C.; Lagacé, R.; Muenzler, M.; Parson, W.; Budowle, B. Distinguishing mitochondrial DNA and NUMT sequences amplified with the precision ID mtDNA whole genome panel. Mitochondrion 2020, 55, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.D.; Sturk-Andreaggi, K.; Alyse Peck, M.; Marshall, C. Bioinformatic removal of NUMT-associated variants in mitotiling next-generation sequencing data from whole blood samples. Electrophoresis 2018, 39, 2785–2797. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Schröder, R.; Ni, S.; Madea, B.; Stoneking, M. Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations. Proc. Natl. Acad. Sci. USA 2015, 112, 2491–2496. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.M.; Balding, D.J. Assessing the Forensic Value of DNA Evidence from Y Chromosomes and Mitogenomes. Genes 2021, 12, 1209. [Google Scholar] [CrossRef]
- Clopper, C.J.; Pearson, E.S. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Magnusson, P.K.E.; Almqvist, C.; Rahman, I.; Ganna, A.; Viktorin, A.; Walum, H.; Halldner, L.; Lundstrom, S.; Ullen, F.; Langstrom, N.; et al. The Swedish Twin Registry: Establishment of a biobank and other recent developments. Twin. Res. Hum. Genet. 2013, 16, 317–329. [Google Scholar] [CrossRef]
- Andrews, R.M.; Kubacka, I.; Chinnery, P.F.; Lightowlers, R.N.; Turnbull, D.M.; Howell, N. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 1999, 23, 147. [Google Scholar] [CrossRef]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]
- Sturk-Andreaggi, K.; Peck, M.A.; Boysen, C.; Dekker, P.; McMahon, T.P.; Marshall, C.K. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data. Forensic Sci. Int. Genet. 2017, 31, 189–197. [Google Scholar] [CrossRef]
- van Oven, M.; Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009, 30, E386–E394. [Google Scholar] [CrossRef]
- van Oven, M. PhyloTree Build 17: Growing the human mitochondrial DNA tree. Forensic Sci. Int. Genet. Suppl. Ser. 2015, 5, e392–e394. [Google Scholar] [CrossRef]
- Bodner, M.; Irwin, J.A.; Coble, M.D.; Parson, W. Inspecting close maternal relatedness: Towards better mtDNA population samples in forensic databases. Forensic Sci. Int. Genet. 2011, 5, 138–141. [Google Scholar] [CrossRef]
- Huber, N.; Parson, W.; Dür, A. Next generation database search algorithm for forensic mitogenome analyses. Forensic Sci. Int. Genet. 2018, 37, 204–214. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Dür, A.; Huber, N.; Parson, W. Fine-Tuning Phylogenetic Alignment and Haplogrouping of mtDNA Sequences. Int. J. Mol. Sci. 2021, 22, 5747. [Google Scholar] [CrossRef] [PubMed]
- Mauri, M.; Elli, T.; Caviglia, G.; Uboldi, G.; Azzi, M. RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter; ACM: New York, NY, USA, 2017; pp. 28:1–28:5. [Google Scholar] [CrossRef]
- Filograna, R.; Mennuni, M.; Alsina, D.; Larsson, N. Mitochondrial DNA copy number in human disease: The more the better? FEBS Lett. 2021, 595, 976–1002. [Google Scholar] [CrossRef]
- Chu, H.; Hsiao, W.W.L.; Tsao, T.T.H.; Chang, C.; Liu, Y.; Fan, C.; Lin, H.; Chang, H.; Yeh, T.; Chen, J.; et al. Quantitative assessment of mitochondrial DNA copies from whole genome sequencing. BMC Genom. 2012, 13 (Suppl. S7), S5. [Google Scholar] [CrossRef] [PubMed]
- Longchamps, R.J.; Castellani, C.A.; Yang, S.Y.; Newcomb, C.E.; Sumpter, J.A.; Lane, J.; Grove, M.L.; Guallar, E.; Pankratz, N.; Taylor, K.D.; et al. Evaluation of mitochondrial DNA copy number estimation techniques. PLoS ONE 2020, 15, e0228166. [Google Scholar] [CrossRef]
- Stoler, N.; Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genom. Bioinform. 2021, 3, lqab019. [Google Scholar] [CrossRef]
- Parson, W.; Gusmão, L.; Hares, D.R.; Irwin, J.A.; Mayr, W.R.; Morling, N.; Pokorak, E.; Prinz, M.; Salas, A.; Schneider, P.M.; et al. DNA Commission of the International Society for Forensic Genetics: Revised and extended guidelines for mitochondrial DNA typing. Forensic Sci. Int. Genet. 2014, 13, 134–142. [Google Scholar] [CrossRef]
- Tanaka, M.; Cabrera, V.M.; González, A.M.; Larruga, J.M.; Takeyasu, T.; Fuku, N.; Guo, L.; Hirose, R.; Fujita, Y.; Kurata, M.; et al. Mitochondrial Genome Variation in Eastern Asia and the Peopling of Japan. Genome Res. 2004, 14, 1832–1850. [Google Scholar] [CrossRef]
- González, A.M.; Larruga, J.M.; Abu-Amero, K.K.; Shi, Y.; Pestano, J.; Cabrera, V.M. Mitochondrial lineage M1 traces an early human backflow to Africa. BMC Genom. 2007, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Just, R.S.; Irwin, J.A.; Parson, W. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci. Int. Genet. 2015, 18, 131–139. [Google Scholar] [CrossRef]
- Irwin, J.A.; Saunier, J.L.; Niederstätter, H.; Strouss, K.M.; Sturk, K.A.; Diegoli, T.M.; Brandstätter, A.; Parson, W.; Parsons, T.J. Investigation of Heteroplasmy in the Human Mitochondrial DNA Control Region: A Synthesis of Observations from More Than 5000 Global Population Samples. J. Mol. Evol. 2009, 68, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Sturk-Andreaggi, K.; Parson, W.; Allen, M.; Marshall, C. Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy. Forensic Sci. Int. Genet. 2020, 44, 102205. [Google Scholar] [CrossRef] [PubMed]
- Stoljarova, M.; King, J.L.; Takahashi, M.; Aaspõllu, A.; Budowle, B. Whole mitochondrial genome genetic diversity in an Estonian population sample. Int. J. Leg. Med. 2016, 130, 67–71. [Google Scholar] [CrossRef]
- Malyarchuk, B.; Litvinov, A.; Derenko, M.; Skonieczna, K.; Grzybowski, T.; Grosheva, A.; Shneider, Y.; Rychkov, S.; Zhukova, O. Mitogenomic diversity in Russians and Poles. Forensic Sci. Int. Genet. 2017, 30, 51–56. [Google Scholar] [CrossRef]
- Översti, S.; Onkamo, P.; Stoljarova, M.; Budowle, B.; Sajantila, A.; Palo, J.U. Identification and analysis of mtDNA genomes attributed to Finns reveal long-stagnant demographic trends obscured in the total diversity. Sci. Rep. 2017, 7, 6193. [Google Scholar] [CrossRef]
- Margaryan, A.; Lawson, D.J.; Sikora, M.; Racimo, F.; Rasmussen, S.; Moltke, I.; Cassidy, L.M.; Jorsboe, E.; Ingason, A.; Pedersen, M.W.; et al. Population genomics of the Viking world. Nature 2020, 585, 390–396. [Google Scholar] [CrossRef]
- Foreign-Born by Country of Birth, Sex and Year of Immigration; Statistics Sweden: Solna, Sweden, 2022.
- Kling, D.; Tillmar, A. Forensic genealogy-A comparison of methods to infer distant relationships based on dense SNP data. Forensic Sci. Int. Genet. 2019, 42, 113–124. [Google Scholar] [CrossRef]
100X Coverage | Sample Count | Avg Mapped mtDNA Reads | Avg Read Depth | Avg Major Nucleotide Frequency | |
---|---|---|---|---|---|
All | No HP | ||||
Complete | 859 | 297,369.6 | 2363.8 | 98.0 | 99.6 |
Nearly Complete | 59 | 82,393.4 | 652.5 | 97.5 | 99.0 |
Incomplete | 16 | 69,264.9 | 538.4 | 95.7 | 98.4 |
All | 934 | 279,882.2 | 2224.4 | 98.0 | 99.5 |
Subset | 100 | 288,141.7 | 2271.6 | 97.9 | 99.5 |
Range | Match Type | Total Haplotypes | Unique Haplotypes (Proportion Unique) | Observed RMP (%) | Empirical RMP (%) | Haplotype Diversity |
---|---|---|---|---|---|---|
HVS | Literal | 531 | 393 (74.0%) | 0.71 | 0.60 | 0.9940 |
Pattern | 473 | 324 (68.5%) | 1.14 | 1.03 | 0.9897 | |
CR | Literal | 583 | 447 (76.7%) | 0.47 | 0.37 | 0.9963 |
Pattern | 524 | 372 (71.0%) | 0.67 | 0.57 | 0.9943 | |
Mitogenome | Literal | 821 | 746 (90.9%) | 0.15 | 0.04 | 0.9996 |
Pattern | 750 | 629 (83.7%) | 0.17 | 0.07 | 0.9993 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sturk-Andreaggi, K.; Bodner, M.; Ring, J.D.; Ameur, A.; Gyllensten, U.; Parson, W.; Marshall, C.; Allen, M. Complete Mitochondrial DNA Genome Variation in the Swedish Population. Genes 2023, 14, 1989. https://doi.org/10.3390/genes14111989
Sturk-Andreaggi K, Bodner M, Ring JD, Ameur A, Gyllensten U, Parson W, Marshall C, Allen M. Complete Mitochondrial DNA Genome Variation in the Swedish Population. Genes. 2023; 14(11):1989. https://doi.org/10.3390/genes14111989
Chicago/Turabian StyleSturk-Andreaggi, Kimberly, Martin Bodner, Joseph D. Ring, Adam Ameur, Ulf Gyllensten, Walther Parson, Charla Marshall, and Marie Allen. 2023. "Complete Mitochondrial DNA Genome Variation in the Swedish Population" Genes 14, no. 11: 1989. https://doi.org/10.3390/genes14111989
APA StyleSturk-Andreaggi, K., Bodner, M., Ring, J. D., Ameur, A., Gyllensten, U., Parson, W., Marshall, C., & Allen, M. (2023). Complete Mitochondrial DNA Genome Variation in the Swedish Population. Genes, 14(11), 1989. https://doi.org/10.3390/genes14111989