Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crossing Diploid Tordis or Inger Female Plants with Autotetraploid Male Plants and Propagation of Triploid Energy Willow Genotypes
2.2. Flow Cytometry
2.3. Phenotyping of Triploid Heterosis in Root Growth in Soil
2.4. Quantification of Triploid Heterosis by Analyses of Root Growth Intensity Parameters in Knop’s Solution
2.5. Root Sections, Microscopy, and Measurement of Cell Size
2.6. Analysis of Hormone Contents in Main Root Tips
2.7. Statistical Analyses
3. Results
3.1. Generation of Triploid Hybrids by Crossing Autotetraploid and Diploid Energy Willow Plants
3.2. Expression of Triploid Heterosis in Root Biomass as Shown by Root Phenotyping of Willow Plants Grown in Soil
3.3. Deeper Analysis of the Triploid Hybrid Vigor in Root Growth Rate In Vitro
3.4. Comparison of Cellular Structures in Roots of Triploid Hybrids and Their Parents
3.5. Hormonal Background of Growth Responses in Roots of Triploid Hybrids and Their Parents in Knop’s Solution
4. Discussion
4.1. Control of the Size of the Root System
4.2. Primary Factor in Generation of Triploid Heterosis in Root Systems
4.3. Dependence of Triploid Heterosis on a Shift in the Auxin–Cytokinin Ratio in Willow Roots
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clifton-Brown, J.; Harfouche, A.; Casler, M.D.; Dylan Jones, H.; Macalpine, W.J.; Murphy-Bokern, D.; Smart, L.B.; Adler, A.; Ashman, C.; Awty-Carroll, D.; et al. Breeding Progress and Preparedness for Mass-Scale Deployment of Perennial Lignocellulosic Biomass Crops Switchgrass, Miscanthus, Willow and Poplar. GCB Bioenergy 2019, 11, 118–151. [Google Scholar] [CrossRef]
- De Kam, M.J.; Vance Morey, R.; Tiffany, D.G. Biomass Integrated Gasification Combined Cycle for Heat and Power at Ethanol Plants. Energy Convers. Manag. 2009, 50, 1682–1690. [Google Scholar] [CrossRef]
- Dias, G.M.; Ayer, N.W.; Kariyapperuma, K.; Thevathasan, N.; Gordon, A.; Sidders, D.; Johannesson, G.H. Life Cycle Assessment of Thermal Energy Production from Short-Rotation Willow Biomass in Southern Ontario, Canada. Appl. Energy 2017, 204, 343–352. [Google Scholar] [CrossRef]
- Dey, P.; Pal, P.; Kevin, J.D.; Das, D.B. Lignocellulosic Bioethanol Production: Prospects of Emerging Membrane Technologies to Improve the Process—A Critical Review. Rev. Chem. Eng. 2020, 36, 333–367. [Google Scholar] [CrossRef]
- Gaykawad, S.S.; Zha, Y.; Punt, P.J.; van Groenestijn, J.W.; van der Wielen, L.A.M.; Straathof, A.J.J. Pervaporation of Ethanol from Lignocellulosic Fermentation Broth. Bioresour. Technol. 2013, 129, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi Moghaddam, E.; Ericsson, N.; Hansson, P.A.; Nordberg, Å. Exploring the Potential for Biomethane Production by Willow Pyrolysis Using Life Cycle Assessment Methodology. Energy Sustain. Soc. 2019, 9, 6. [Google Scholar] [CrossRef]
- Kakuk, B.; Bagi, Z.; Rákhely, G.; Maróti, G.; Dudits, D.; Kovács, K.L. Methane Production from Green and Woody Biomass Using Short Rotation Willow Genotypes for Bioenergy Generation. Bioresour. Technol. 2021, 333, 125223. [Google Scholar] [CrossRef] [PubMed]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Capuana, M. A Review of the Performance of Woody and Herbaceous Ornamental Plants for Phytoremediation in Urban Areas. Iforest-Biogeosci. For. 2020, 13, 139–151. [Google Scholar] [CrossRef]
- Hauptvogl, M.; Kotrla, M.; Prčík, M.; Pauková, Ž.; Kováčik, M.; Lošák, T. Phytoremediation Potential of Fast-Growing Energy Plants: Challenges and Perspectives—A Review. Pol. J. Environ. Stud. 2020, 29, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Marmiroli, M.; Pietrini, F.; Maestri, E.; Zacchini, M.; Marmiroli, N.; Massacci, A. Growth, Physiological and Molecular Traits in Salicaceae Trees Investigated for Phytoremediation of Heavy Metals and Organics. Tree Physiol. 2011, 31, 1319–1334. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.A.; Sofi, Z.M.; Malik, J.A.; Wani, J.A. Phytoremediation of Heavy Metals Using Salix (Willows). In Bioremediation and Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2, pp. 161–174. [Google Scholar]
- Feng, X.; Xu, S.; Li, J.; Yang, Y.; Chen, Q.; Lyu, H.; Zhong, C.; He, Z.; Shi, S. Molecular Adaptation to Salinity Fluctuation in Tropical Intertidal Environments of a Mangrove Tree Sonneratia Alba. BMC Plant Biol. 2020, 20, 178. [Google Scholar] [CrossRef]
- Hanley, S.J.; Karp, A. Genetic Strategies for Dissecting Complex Traits in Biomass Willows (Salix spp.). Tree Physiol. 2014, 34, 1167–1180. [Google Scholar] [CrossRef]
- Kulig, B.; Gacek, E.; Wojciechowski, R.; Oleksy, A.; Kołodziejczyk, M.; Szewczyk, W.; Klimek-Kopyra, A. Biomass Yield and Energy Efficiency of Willow Depending on Cultivar, Harvesting Frequency and Planting Density. Plant Soil Environ. 2019, 65, 377–386. [Google Scholar] [CrossRef]
- Isebrands, J.; Richardson, J. Poplars and Willows: Trees for Society and the Environment; CABI: Wallingford, UK, 2014. [Google Scholar]
- Suda, Y.; Argus, G.W. Chromosome Numbers of Some North American Salix. Brittonia 1968, 20, 191–197. [Google Scholar] [CrossRef]
- Serapiglia, M.J.; Gouker, F.E.; Smart, L.B. Early Selection of Novel Triploid Hybrids of Shrub Willow with Improved Biomass Yield Relative to Diploids. BMC Plant Biol. 2014, 14, 74. [Google Scholar] [CrossRef]
- Carlson, C.H.; Smart, L.B. Heterosis for Biomass-Related Traits in Interspecific Triploid Hybrids of Willow (Salix spp.). Bioenergy Res. 2021, 15, 1042–1056. [Google Scholar] [CrossRef]
- Cheng, S.; Zhu, X.; Liao, T.; Li, Y.; Yao, P.; Suo, Y.; Zhang, P.; Wang, J.; Kang, X. Gene Expression Differences between High-Growth Populus Allotriploids and Their Diploid Parents. Forests 2015, 6, 839. [Google Scholar] [CrossRef]
- Tracy, S.R.; Nagel, K.A.; Postma, J.A.; Fassbender, H.; Wasson, A.; Watt, M. Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities. Trends Plant Sci. 2020, 25, 105–118. [Google Scholar] [CrossRef]
- Hund, A.; Reimer, R.; Stamp, P.; Walter, A. Can We Improve Heterosis for Root Growth of Maize by Selecting Parental Inbred Lines with Different Temperature Behaviour? Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1580–1588. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Craft, E.J.; Yuan, L.; Cheng, L.; Mi, G.; Chen, F. Physiological and Genetic Analysis for Maize Root Characters and Yield in Response to Low Phosphorus Stress. Breed Sci. 2018, 68, 268–277. [Google Scholar] [CrossRef]
- Ruiz, M.; Oustric, J.; Santini, J.; Morillon, R. Synthetic Polyploidy in Grafted Crops. Front. Plant Sci. 2020, 11, 540894. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Gray, A.D.; Auger, D.L.; Birchler, J.A. Genomic Dosage Effects on Heterosis in Triploid Maize. Proc. Natl. Acad. Sci. USA 2013, 110, 2665–2669. [Google Scholar] [CrossRef]
- Hallahan, B.F.; Fernandez-Tendero, E.; Fort, A.; Ryder, P.; Dupouy, G.; Deletre, M.; Curley, E.; Brychkova, G.; Schulz, B.; Spillane, C. Hybridity Has a Greater Effect than Paternal Genome Dosage on Heterosis in Sugar Beet (β vulgaris). BMC Plant Biol. 2018, 18, 120. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Sabhapondit, S.; Ahmed, G.; Das, S. Biochemical Evaluation of Triploid Progenies of Diploid × Tetraploid Breeding Populations of Camellia for Genotypes Rich in Catechin and Caffeine. Biochem. Genet. 2013, 51, 358–376. [Google Scholar] [CrossRef]
- Dudits, D.; Török, K.; Cseri, A.; Paul, K.; Nagy, A.V.; Nagy, B.; Sass, L.; Ferenc, G.; Vankova, R.; Dobrev, P.; et al. Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis. Plant Physiol. 2016, 170, 1504–1523. [Google Scholar] [CrossRef]
- Cseri, A.; Borbély, P.; Poór, P.; Fehér, A.; Sass, L.; Jancsó, M.; Penczi, A.; Rádi, F.; Gyuricza, C.; Digruber, T.; et al. Increased Adaptation of an Energy Willow Cultivar to Soil Salinity by Duplication of Its Genome Size. Biomass Bioenergy 2020, 140, 105655. [Google Scholar] [CrossRef]
- Dudits, D.; Cseri, A.; Török, K.; Sass, L.; Zombori, Z.; Ferenc, G.; Poór, P.; Borbély, P.; Czékus, Z.; Vankova, R.; et al. Triploid Hybrid Vigor in Above-Ground Growth and Methane Fermentation Efficiency of Energy Willow. Front. Plant Sci. 2022, 13, 770284. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Ivanov Dobrev, P.; Kamínek, M. Fast and Efficient Separation of Cytokinins from Auxin and Abscisic Acid and Their Purification Using Mixed-Mode Solid-Phase Extraction. J. Chromatogr. A 2002, 950, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Dobrev, P.I.; Vankova, R. Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues. In Plant Salt Tolerance: Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 913. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Qi, S.; Dong, M.; Wang, Z.; Li, Y.; Chen, S.; Li, B.; Zhang, J. Ploidy and Hybridity Effects on Leaf Size, Cell Size and Related Genes Expression in Triploids, Diploids and Their Parents in Populus. Planta 2019, 249, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Liao, T.; Ren, Y.; Geng, X.; Kang, X. Molecular Mechanism of Vegetative Growth Advantage in Allotriploid Populus. Int. J. Mol. Sci. 2020, 21, 441. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, J.; Ren, A.; Xu, X.; Zhang, H.; Zhao, T.; Jiang, X.; Sun, Y.; Li, J.; Yang, H. Heterosis and Combining Ability Analysis of Fruit Yield, Early Maturity, and Quality in Tomato. Agronomy 2021, 11, 807. [Google Scholar] [CrossRef]
- Alarcon, M.V.; Salguero, J. Transition Zone Cells Reach G2 Phase before Initiating Elongation in Maize Root Apex. Biol. Open 2017, 6, 909–913. [Google Scholar] [CrossRef] [PubMed]
- Perilli, S.; Di Mambro, R.; Sabatini, S. Growth and Development of the Root Apical Meristem. Curr. Opin. Plant Biol. 2012, 15, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Pavlikova, E.; Rood, S.B. Cellular basis of heterosis for leaf area in maize. Can. J. Plant Sci. 1987, 67, 99–104. [Google Scholar] [CrossRef]
- Saini, S.; Sharma, I.; Kaur, N.; Pati, P.K. Auxin: A Master Regulator in Plant Root Development. Plant Cell Rep. 2013, 32, 741–757. [Google Scholar] [CrossRef] [PubMed]
- Korasick, D.A.; Enders, T.A.; Strader, L.C. Auxin Biosynthesis and Storage Forms. J. Exp. Bot. 2013, 64, 2541–2555. [Google Scholar] [CrossRef]
- Noah, A.M.; Casanova-Sáez, R.; Ango, R.E.M.; Antoniadi, I.; Karady, M.; Novák, O.; Niemenak, N.; Ljung, K. Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma Cacao. Plants 2021, 10, 967. [Google Scholar] [CrossRef]
- Su, Y.H.; Liu, Y.B.; Zhang, X.S. Auxin-Cytokinin Interaction Regulates Meristem Development. Mol. Plant 2011, 4, 616–625. [Google Scholar] [CrossRef]
- Chapman, E.J.; Estelle, M. Mechanism of Auxin-Regulated Gene Expression in Plants. Annu. Rev. Genet. 2009, 43, 265–285. [Google Scholar] [CrossRef] [PubMed]
- Dello Ioio, R.; Nakamura, K.; Moubayidin, L.; Perilli, S.; Taniguchi, M.; Morita, M.T.; Aoyama, T.; Costantino, P.; Sabatini, S. A Genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem. Science 2008, 322, 1380–1384. [Google Scholar] [CrossRef] [PubMed]
- Takei, K.; Sakakibara, H.; Taniguchi, M.; Sugiyama, T. Nitrogen-Dependent Accumulation of Cytokinins in Root and the Translocation to Leaf: Implication of Cytokinin Species That Induces Gene Expression of Maize Response Regulator. Plant Cell Physiol. 2001, 42, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Barker, R.; Fernandez Garcia, M.N.; Powers, S.J.; Vaughan, S.; Bennett, M.J.; Phillips, A.L.; Thomas, S.G.; Hedden, P. Mapping Sites of Gibberellin Biosynthesis in the Arabidopsis Root Tip. New Phytol. 2021, 229, 1521–1534. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, L.; Forde, B.G.; Davies, W.J. The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. Front. Plant Sci. 2017, 8, 1493. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, T.; Groot, E.P.; Kazantsev, F.V.; Teale, W.; Omelyanchuk, N.; Kovrizhnykh, V.; Palme, K.; Mironova, V.V. Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiol. 2019, 180, 1725–1739. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhao, P.X.; Cai, X.T.; Mao, J.L.; Miao, Z.Q.; Xiang, C. Bin Integration of Jasmonic Acid and Ethylene into Auxin Signaling in Root Development. Front. Plant Sci. 2020, 11, 271. [Google Scholar] [CrossRef] [PubMed]
Genotypes | Root Surface Area (cm2) | MPH% | Root Weight (g) | MPH% |
---|---|---|---|---|
Tordis | 37.99 ± 4.35 *** | 8.89 ± 0.92 *** | ||
TH 3/12 | 58.92 ± 7.08 | 43.99 | 13.93 ± 1.92 | 19.31 |
PP-E7 | 43.85 ± 8.43 *** | 14.46 ± 1.88 | ||
Tordis | 37.99 ± 4.35 *** | 8.89 ± 0.92 *** | ||
TH 17/17 | 33.15 ± 16.26 | −23.49 | 11.56 ± 1.57 | 9.63 |
PP-E15 | 48.67 ± 7.92 ** | 12.20 ± 0.85 | ||
Inger | 55.29 ± 7.19 ** | 14.90 ± 2.02 | ||
TH 21/2 | 62.92 ± 8.44 | 26.93 | 16.15 ± 1.64 | 10.01 |
PP-E7 | 43.85 ± 8.43 *** | 14.46 ± 1.88 * |
GENOTYPES | ROOT GROWTH in Knop’s Solution | |||
---|---|---|---|---|
Primary Root Length after 16 Days (mm) | Root Growth Rate (mm Growth in the Last 48 h) | MPH (%) CPH (%) | Frequency of G2/M Cells (%) and MPH (%) | |
Tordis | 79.20 ± 20.73 * | 13.90 ± 9.06 *** | 25.57 | |
TH3/12 | 64.71 ± 15.28 | 42.86 ± 7.99 | 70.08 208.35 | 15.24 −17.75 |
PP-E7 | 110.33 ± 28.55 *** | 36.50 ± 13.49 | 11.49 | |
Tordis | 79.20 ± 20.73 | 13.90 ± 9.06 ** | 25.57 | |
TH17/17 | 81.23 ± 31.27 | 21.77 ± 10.62 | 0.00 56.62 | 15.70 −14.97 |
PP-E15 | 91.92 ± 20.90 | 36.92 ± 14.56 *** | 11.36 | |
Inger | 55.36 ± 24.03 *** | 19.18 ± 8.48 ** | 21.30 | |
TH21/2 | 106.42 ± 33.46 | 30.67 ± 12.49 | 10.17 59.91 | 16.85 2.78 |
PP-E7 | 110.33 ± 28.55 | 36.50 ± 13.49 | 11.49 |
PARENTS | TORDIS | PP-E7 | INGER | TORDIS | PP-E15 | |||
---|---|---|---|---|---|---|---|---|
TRIPLOID HYBRIDS | → | TH3/12 | ← → | TH21/2 | ← | → | TH17/17 | ← |
Indole-3-acetic acid (IAA) | 463.29 | 166.12 | 211.37 | 251.35 * | 280.89 | 463.29 | 226.12 | 321.52 |
IAA-glutamate MPH (%) | 66.41 | 125.20 153.44 | 32.39 | 92.59 158.92 | 39.13 | 66.41 | 24.69 * | 17.36 |
Phenylacetic acid | 40.97 | 34.69 * | 29.69 | 29.67 * | 31.95 | 40.97 | 42.20 * | 148.83 |
Salicylic acid | 1031.56 | 480.20 | 973.82 | 729.02 | 769.18 | 1031.56 | 694.92 | 728.84 |
Benzoic acid | 2097.12 | 1439.9 * | 1088.23 | 1628.9 * | 1717.8 | 1034.56 | 1194.1 * | 3054.00 |
Jasmonic acid | 331.92 | 220.51 * | 211.98 | 193.98 | 705.62 | 331.92 | 235.64 | 318.2 |
Gibberellin19 MPH (%) | 15.73 | 78.07 99.95 | 62.36 | 56.29 * | 54.17 | 15.73 | 22.48 * | 33.58 |
Abscisic acid (ABA) MPH (%) | 26.39 | 27.89 11.87 | 23.47 | 16.15 | 18.40 | 26.39 | 16.32 | 21.43 |
Dihydro- phaseic acid MPH (%) | 28.87 | 31.76 28.50 | 20.56 | 21.66 2.34 | 21.77 | 28.87 | 16.82 | 20.56 |
Phaseic acid MPH (%) | 29.80 | 87.30 148.93 | 40.34 | 50.97 26.63 | 40.16 | 29.80 | 24.81 | 44.40 |
ABA-glucose ester | 0.00 | 1.82 | 0.00 | 5.62 | 0.00 | 5.28 | 0.00 | 2.05 |
Trans-zeatin | 11.57 | 11.67 | 24.98 | 12.98 | 9.12 | 11.57 | 2.28 | 9.85 |
Cytokinin (CK) ribosides MPH (%) | 18.42 | 26.59 * | 38.86 | 16.44 * | 14.93 | 18.42 | 19.40 5.55 | 18.34 |
CK O-glucosides | 5.13 | 2.06 | 2.65 | 2.28 | 4.96 | 5.13 | 1.77 | 8.22 |
Trans-zeatin riboside monophosphate MPH (%) | 6.46 | 13.36 18.81 | 16.03 | 17.81 * | 29.82 | 6.46 | 11.32 2.26 | 15.68 |
Isopentenyl adenosine monophosphate MPH (%) | 19.22 | 50.18 67.10 | 40.84 | 43.30 6.57 | 40.42 | 19.22 | 35.86 21.33 | 39.89 |
Cis-zeatin riboside monophosphate MPH (%) | 11.10 | 15.44 112.53 | 3.43 | 4.45 * | 8.42 | 11.10 | 9.74 20.25 | 5.10 |
CK phosphates MPH (%) | 36.78 | 78.98 62.71 | 60.30 | 65.56 * | 78.65 | 36.78 | 56.92 16.82 | 60.67 |
Total CK MPH (%) | 71.90 | 119.30 | 126.79 | 162.89 45.36 | 97.33 | 71.90 | 80.70 | 97.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudits, D.; Cseri, A.; Török, K.; Vankova, R.; Dobrev, P.I.; Sass, L.; Steinbach, G.; Kelemen-Valkony, I.; Zombori, Z.; Ferenc, G.; et al. Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants. Genes 2023, 14, 1929. https://doi.org/10.3390/genes14101929
Dudits D, Cseri A, Török K, Vankova R, Dobrev PI, Sass L, Steinbach G, Kelemen-Valkony I, Zombori Z, Ferenc G, et al. Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants. Genes. 2023; 14(10):1929. https://doi.org/10.3390/genes14101929
Chicago/Turabian StyleDudits, Dénes, András Cseri, Katalin Török, Radomira Vankova, Petre I. Dobrev, László Sass, Gábor Steinbach, Ildikó Kelemen-Valkony, Zoltán Zombori, Györgyi Ferenc, and et al. 2023. "Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants" Genes 14, no. 10: 1929. https://doi.org/10.3390/genes14101929
APA StyleDudits, D., Cseri, A., Török, K., Vankova, R., Dobrev, P. I., Sass, L., Steinbach, G., Kelemen-Valkony, I., Zombori, Z., Ferenc, G., & Ayaydin, F. (2023). Manifestation of Triploid Heterosis in the Root System after Crossing Diploid and Autotetraploid Energy Willow Plants. Genes, 14(10), 1929. https://doi.org/10.3390/genes14101929