Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Relative Quantification of the Ratio of Telomere Length and mtDNA Copy Number
2.3. Cytokines and Blood Count
2.4. Clinical Data Evaluated in Patients
2.5. Statistical Analyses
3. Results
3.1. Demographic and Clinical Characteristics of Participants
3.2. Longitudinal Comparison of mtDNA Copy Number in Patients vs. Controls
3.3. Longitudinal Comparison of Telomere Length in Patients vs. Controls
3.4. Analysis of Both Aging Markers in Untreated and Treated PD Patients with Dopaminergic Therapies
3.5. Multiple Correlation Analysis of the Two Aging Markers in Both Groups of Study at Baseline
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [PubMed]
- Fearnley, J.M.; Lees, A.J. Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 1991, 114, 2283–2301. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Davis, R.L.; Sue, C.M. Mitochondrial Dysfunction in Parkinson’s Disease: New Mechanistic Insights and Therapeutic Perspectives. Curr. Neurol. Neurosci. Rep. 2018, 18, 21. [Google Scholar] [CrossRef]
- Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and Parkinson’s Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Niveta, J.P.S.; Kumar, M.A.; Parvathi, V.D. Telomere attrition and inflammation: The chicken and the egg story. Egypt. J. Med. Hum. Genet. 2022, 23, 131. [Google Scholar] [CrossRef]
- Klæstrup, I.H.; Just, M.K.; Holm, K.L.; Alstrup, A.K.O.; Romero-Ramos, M.; Borghammer, P.; Van Den Berge, N. Impact of aging on animal models of Parkinson’s disease. Front. Aging Neurosci. 2022, 14, 909273. [Google Scholar] [CrossRef]
- Alcalay, R.N. Cytokines as Potential Biomarkers of Parkinson Disease. JAMA Neurol. 2016, 73, 1282–1284. [Google Scholar] [CrossRef]
- Zimmermann, M.; Brockmann, K. Blood and Cerebrospinal Fluid Biomarkers of Inflammation in Parkinson’s Disease. J. Park. Dis. 2022, 12, S183–S200. [Google Scholar] [CrossRef]
- Joo, J.; Jeong, J.; Park, H.J. Blood Biomarkers in Patients with Parkinson’s Disease: A Review in Context of Anesthetic Care. Diagnostics 2023, 13, 693. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Niu, Y.; Xu, Y.; Zhou, Q.; Xu, X.; Wang, J.; Yu, M. Increased abundance of myeloid-derived suppressor cells and Th17 cells in peripheral blood of newly-diagnosed Parkinson’s disease patients. Neurosci. Lett. 2017, 648, 21–25. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, A.W.; Huang, Y.; Yang, Y.; Chen, J.N.; Gu, T.T.; Cao, B.B.; Qiu, Y.H.; Peng, Y.P. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson’s disease. Brain Behav. Immun. 2019, 81, 630–645. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Tian, W.; Zhao, F.; Li, M.; Ye, Q.; Wei, Y.; Li, T.; Xie, K. Systemic immune-inflammation index, SII, for prognosis of elderly patients with newly diagnosed tumors. Oncotarget 2018, 9, 35293–35299. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fan, Q.; Wu, S.; Wan, Y.; Lei, Y. Compared with the monocyte to high-density lipoprotein ratio (MHR) and the neutrophil to lymphocyte ratio (NLR), the neutrophil to high-density lipoprotein ratio (NHR) is more valuable for assessing the inflammatory process in Parkinson’s disease. Lipids Health Dis. 2021, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Sanjari Moghaddam, H.; Ghazi Sherbaf, F.; Mojtahed Zadeh, M.; Ashraf-Ganjouei, A.; Aarabi, M.H. Association between Peripheral Inflammation and DATSCAN Data of the Striatal Nuclei in Different Motor Subtypes of Parkinson Disease. Front. Neurol. 2018, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Levstek, T.; Redenšek, S.; Trošt, M.; Dolžan, V.; Podkrajšek, K.T. Assessment of the Telomere Length and Its Effect on the Symptomatology of Parkinson’s Disease. Antioxidants 2021, 10, 137. [Google Scholar] [CrossRef]
- Yu, H.J.; Koh, S.H. Is Telomere Length Shortening a Risk Factor for Neurodegenerative Disorders? Dement. Neurocognit. Disord. 2022, 21, 83–92. [Google Scholar] [CrossRef]
- Grünewald, A.; Rygiel, K.A.; Hepplewhite, P.D.; Morris, C.M.; Picard, M.; Turnbull, D.M. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann. Neurol. 2016, 79, 366–378. [Google Scholar] [CrossRef]
- Dölle, C.; Flønes, I.; Nido, G.S.; Miletic, H.; Osuagwu, N.; Kristoffersen, S.; Lilleng, P.K.; Larsen, J.P.; Tysnes, O.B.; Haugarvoll, K.; et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat. Commun. 2016, 7, 13548. [Google Scholar] [CrossRef]
- Chen, S.H.; Kuo, C.W.; Lin, T.K.; Tsai, M.H.; Liou, C.W. Dopamine Therapy and the Regulation of Oxidative Stress and Mitochondrial DNA Copy Number in Patients with Parkinson’s Disease. Antioxidants 2020, 9, 1159. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.; Odeh, A.; Fattahi, A.J.; Henriksson, A.E.; Miglar, A.; Khosousi, S.; Svenningsson, P. Mitochondrial biogenesis, telomere length and cellular senescence in Parkinson’s disease and Lewy body dementia. Sci. Rep. 2022, 12, 17578. [Google Scholar] [CrossRef] [PubMed]
- Longchamps, R.J.; Yang, S.Y.; Castellani, C.A.; Shi, W.; Lane, J.; Grove, M.L.; Bartz, T.M.; Sarnowski, C.; Liu, C.; Burrows, K.; et al. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum. Genet. 2022, 141, 127–146. [Google Scholar] [CrossRef]
- Al-Kafaji, G.; Jahrami, H.A.; Alwehaidah, M.S.; Alshammari, Y.; Husni, M. Mitochondrial DNA copy number in autism spectrum disorder and attention deficit hyperactivity disorder: A systematic review and meta-analysis. Front. Psychiatry 2023, 14, 1196035. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Castellani, C.A.; Longchamps, R.J.; Pillalamarri, V.K.; O’Rourke, B.; Guallar, E.; Arking, D.E. Blood-derived mitochondrial DNA copy number is associated with gene expression across multiple tissues and is predictive for incident neurodegenerative disease. Genome Res. 2021, 31, 349–358. [Google Scholar] [CrossRef]
- Sun, X.; Zhan, L.; Chen, Y.; Wang, G.; He, L.; Wang, Q.; Zhou, F.; Yang, F.; Wu, J.; Wu, Y.; et al. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. Signal Transduct. Target. Ther. 2018, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Kilbaugh, T.J.; Lvova, M.; Karlsson, M.; Zhang, Z.; Leipzig, J.; Wallace, D.C.; Margulies, S.S. Peripheral Blood Mitochondrial DNA as a Biomarker of Cerebral Mitochondrial Dysfunction following Traumatic Brain Injury in a Porcine Model. PLoS ONE 2015, 10, e0130927. [Google Scholar] [CrossRef]
- Pyle, A.; Anugrha, H.; Kurzawa-Akanbi, M.; Yarnall, A.; Burn, D.; Hudson, G. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol. Aging 2016, 38, 216.e7–216.e10. [Google Scholar] [CrossRef]
- Liu, C.S.; Tsai, C.S.; Kuo, C.L.; Chen, H.W.; Lii, C.K.; Ma, Y.S.; Wei, Y.H. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 2003, 37, 1307–1317. [Google Scholar] [CrossRef]
- Guha, M.; Avadhani, N.G. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013, 13, 577–591. [Google Scholar] [CrossRef]
- Castellani, C.A.; Longchamps, R.J.; Sun, J.; Guallar, E.; Arking, D.E. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion 2020, 53, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Müller-Nedebock, A.C.; Meldau, S.; Lombard, C.; Abrahams, S.; van der Westhuizen, F.H.; Bardien, S. Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson’s disease. Park. Relat. Disord. 2022, 101, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Forero, D.A.; González-Giraldo, Y.; López-Quintero, C.; Castro-Vega, L.J.; Barreto, G.E.; Perry, G. Telomere length in Parkinson’s disease: A meta-analysis. Exp. Gerontol. 2016, 75, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Bodelon, C.; Savage, S.A.; Gadalla, S.M. Telomeres in molecular epidemiology studies. Prog. Mol. Biol. Transl. Sci. 2014, 125, 113–131. [Google Scholar] [CrossRef]
- Chong, M.; Mohammadi-Shemirani, P.; Perrot, N.; Nelson, W.; Morton, R.; Narula, S.; Lali, R.; Khan, I.; Khan, M.; Judge, C.; et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. eLife 2022, 11, e70382. [Google Scholar] [CrossRef]
- Álvarez-Luquín, D.D.; Guevara-Salinas, A.; Arce-Sillas, A.; Espinosa-Cárdenas, R.; Leyva-Hernández, J.; Montes-Moratilla, E.U.; Adalid-Peralta, L. Increased Tc17 cell levels and imbalance of naïve/effector immune response in Parkinson’s disease patients in a two-year follow-up: A case control study. J. Transl. Med. 2021, 19, 378. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef]
- Refinetti, P.; Warren, D.; Morgenthaler, S.; Ekstrøm, P.O. Quantifying mitochondrial DNA copy number using robust regression to interpret real time PCR results. BMC Res. Notes 2017, 10, 593. [Google Scholar] [CrossRef]
- Martínez-Martín, P.; Rodriguez-Blazquez, C.; Alvarez, M.; Arakaki, T.; Arillo, V.C.; Chaná, P.; Fernández, W.; Garretto, N.; Martínez-Castrillo, J.C.; Rodríguez-Violante, M.; et al. Parkinson’s disease severity levels and MDS-Unified Parkinson’s Disease Rating Scale. Park. Relat. Disord. 2015, 21, 50–54. [Google Scholar] [CrossRef]
- Jorge de Saráchaga, A.; Cervantes-Arriaga, A.; Llorens-Arenas, R.; Calderón-Fajardo, H.; Rodríguez-Violante, M. Change in Motor and Nonmotor Symptoms Severity in a “Real-Life” Cohort of Subjects with Parkinson’s Disease. Neurosci. J. 2015, 2015, 368989. [Google Scholar] [CrossRef] [PubMed]
- Holden, S.K.; Finseth, T.; Sillau, S.H.; Berman, B.D. Progression of MDS-UPDRS Scores over Five Years in De Novo Parkinson Disease from the Parkinson’s Progression Markers Initiative Cohort. Mov. Disord. Clin. Pract. 2018, 5, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Cilia, R.; Cereda, E.; Akpalu, A.; Sarfo, F.S.; Cham, M.; Laryea, R.; Obese, V.; Oppon, K.; Del Sorbo, F.; Bonvegna, S.; et al. Natural history of motor symptoms in Parkinson’s disease and the long-duration response to levodopa. Brain A J. Neurol. 2020, 143, 2490–2501. [Google Scholar] [CrossRef]
- Maeda, T.; Guan, J.Z.; Koyanagi, M.; Higuchi, Y.; Makino, N. Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson’s disease. J. Neurogenet. 2012, 26, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Martin-Ruiz, C.; Williams-Gray, C.H.; Yarnall, A.J.; Boucher, J.J.; Lawson, R.A.; Wijeyekoon, R.S.; Barker, R.A.; Kolenda, C.; Parker, C.; Burn, D.J.; et al. Senescence and Inflammatory Markers for Predicting Clinical Progression in Parkinson’s Disease: The ICICLE-PD Study. J. Park. Dis. 2020, 10, 193–206. [Google Scholar] [CrossRef]
- Kolyada, A.K.; Vaiserman, A.M.; Krasnenkov, D.S.; Karaban’, I.N. Studies of Telomere Length in Patients with Parkinson’s Disease. Neurosci. Behav. Phys. 2016, 46, 344–347. [Google Scholar] [CrossRef]
- Schürks, M.; Buring, J.; Dushkes, R.; Gaziano, J.M.; Zee, R.Y.; Kurth, T. Telomere length and Parkinson’s disease in men: A nested case-control study. Eur. J. Neurol. 2014, 21, 93–99. [Google Scholar] [CrossRef]
- Hudson, G.; Faini, D.; Stutt, A.; Eccles, M.; Robinson, L.; Burn, D.J.; Chinnery, P.F. No evidence of substantia nigra telomere shortening in Parkinson’s disease. Neurobiol. Aging 2011, 32, 2107.e3–2107.e5. [Google Scholar] [CrossRef]
- Watfa, G.; Dragonas, C.; Brosche, T.; Dittrich, R.; Sieber, C.C.; Alecu, C.; Benetos, A.; Nzietchueng, R. Study of telomere length and different markers of oxidative stress in patients with Parkinson’s disease. J. Nutr. Health Aging 2011, 15, 277–281. [Google Scholar] [CrossRef]
- Degerman, S.; Domellöf, M.; Landfors, M.; Linder, J.; Lundin, M.; Haraldsson, S.; Elgh, E.; Roos, G.; Forsgren, L. Long leukocyte telomere length at diagnosis is a risk factor for dementia progression in idiopathic parkinsonism. PLoS ONE 2014, 9, e113387. [Google Scholar] [CrossRef]
- Chen, R.; Zhan, Y. Association between telomere length and Parkinson’s disease: A Mendelian randomization study. Neurobiol. Aging 2021, 97, 144.e9–144.e11. [Google Scholar] [CrossRef] [PubMed]
- Thanseem, I.; Viswambharan, V.; Poovathinal, S.A.; Anitha, A. Is telomere length a biomarker of neurological disorders? Biomark. Med. 2017, 11, 799–810. [Google Scholar] [CrossRef]
- Gui, Y.X.; Xu, Z.P.; Lv, W.; Zhao, J.J.; Hu, X.Y. Evidence for polymerase gamma, POLG1 variation in reduced mitochondrial DNA copy number in Parkinson’s disease. Park. Relat. Disord. 2015, 21, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Keogh, M.J.; Wilson, I.; Coxhead, J.; Ryan, S.; Rollinson, S.; Griffin, H.; Kurzawa-Akanbi, M.; Santibanez-Koref, M.; Talbot, K.; et al. Mitochondrial DNA point mutations and relative copy number in 1363 disease and control human brains. Acta Neuropathol. Commun. 2017, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.L.; Wong, S.L.; Carling, P.J.; Payne, T.; Sue, C.M.; Bandmann, O. Serum FGF-21, GDF-15, and blood mtDNA copy number are not biomarkers of Parkinson disease. Neurol. Clin. Pract. 2020, 10, 40–46. [Google Scholar] [CrossRef]
- Stoccoro, A.; Smith, A.R.; Baldacci, F.; Del Gamba, C.; Lo Gerfo, A.; Ceravolo, R.; Lunnon, K.; Migliore, L.; Coppedè, F. Mitochondrial D-Loop Region Methylation and Copy Number in Peripheral Blood DNA of Parkinson’s Disease Patients. Genes 2021, 12, 720. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, H.K.; Ko, J.H.; Bang, H.; Lee, D.C. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women. PLoS ONE 2013, 8, e67227. [Google Scholar] [CrossRef]
- Qiu, C.; Enquobahrie, D.A.; Gelaye, B.; Hevner, K.; Williams, M.A. The association between leukocyte telomere length and mitochondrial DNA copy number in pregnant women: A pilot study. Clin. Lab. 2015, 61, 363–369. [Google Scholar] [CrossRef]
- Tyrka, A.R.; Parade, S.H.; Price, L.H.; Kao, H.T.; Porton, B.; Philip, N.S.; Welch, E.S.; Carpenter, L.L. Alterations of Mitochondrial DNA Copy Number and Telomere Length with Early Adversity and Psychopathology. Biol. Psychiatry 2016, 79, 78–86. [Google Scholar] [CrossRef]
- Jung, S.J.; Cho, J.H.; Park, W.J.; Heo, Y.R.; Lee, J.H. Telomere length is correlated with mitochondrial DNA copy number in intestinal, but not diffuse, gastric cancer. Oncol. Lett. 2017, 14, 925–929. [Google Scholar] [CrossRef]
- Subramaniam, S.R.; Chesselet, M.F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol. 2013, 106–107, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.; DePinho, R.A. Axis of ageing: Telomeres, p53 and mitochondria. Nature reviews. Mol. Cell Biol. 2012, 13, 397–404. [Google Scholar] [CrossRef]
- Hu, J.; Hwang, S.S.; Liesa, M.; Gan, B.; Sahin, E.; Jaskelioff, M.; Ding, Z.; Ying, H.; Boutin, A.T.; Zhang, H.; et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 2012, 148, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.K.; Liou, C.W.; Chen, S.D.; Chuang, Y.C.; Tiao, M.M.; Wang, P.W.; Chen, J.B.; Chuang, J.H. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson’s disease. Chang Gung Med. J. 2009, 32, 589–599. [Google Scholar] [PubMed]
- Onyango, I.G.; Lu, J.; Rodova, M.; Lezi, E.; Crafter, A.B.; Swerdlow, R.H. Regulation of neuron mitochondrial biogenesis and relevance to brain health. Biochim. Biophys. Acta 2010, 1802, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Casas-Recasens, S.; Mendoza, N.; López-Giraldo, A.; Garcia, T.; Cosio, B.G.; Pascual-Guardia, S.; Acosta-Castro, A.; Borras-Santos, A.; Gea, J.; Garrabou, G.; et al. Telomere Length but Not Mitochondrial DNA Copy Number Is Altered in Both Young and Old COPD. Front. Med. 2021, 8, 761767. [Google Scholar] [CrossRef]
- Collier, J.J.; Oláhová, M.; McWilliams, T.G.; Taylor, R.W. Mitochondrial signalling and homeostasis: From cell biology to neurological disease. Trends Neurosci. 2023, 46, 137–152. [Google Scholar] [CrossRef]
- Petrica, L.; Vlad, A.; Gadalean, F.; Muntean, D.M.; Vlad, D.; Dumitrascu, V.; Bob, F.; Milas, O.; Suteanu-Simulescu, A.; Glavan, M.; et al. Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Int. J. Mol. Sci. 2023, 24, 9803. [Google Scholar] [CrossRef]
- Feng, W.Q.; Zhang, Y.C.; Xu, Z.Q.; Yu, S.Y.; Huo, J.T.; Tuersun, A.; Zheng, M.H.; Zhao, J.K.; Zong, Y.P.; Lu, A.G. IL-17A-mediated mitochondrial dysfunction induces pyroptosis in colorectal cancer cells and promotes CD8 + T-cell tumour infiltration. J. Transl. Med. 2023, 21, 335. [Google Scholar] [CrossRef]
Characteristics | Patients (n = 27) | Controls (n = 22) | ||||
---|---|---|---|---|---|---|
Total (n = 27) | Male (n = 15) | Female (n = 12) | Total (n = 22) | Male (n = 12) | Female (n = 10) | |
Demographic data | ||||||
Sex (M%, F%) | 100 | 56 | 44 | 100 | 55 | 45 |
Age in years mean ± SD (range) | 61.17 ± 10.68 (41–85) | 61.73 ± 9.60 (47–85) | 63.00 ± 10.82 (41–81) | 55.73 ± 10.20 (34–81) | 54.58 ± 8.39 (40–69) | 57.00 ± 12.38 (34–81) |
BMI | 27.77 ± 4.78 | 27.71 ± 3.50 | 28.02 ± 6.36 | 26.85 ± 3.89 | 26.13 ± 3.21 | 27.72 ± 4.60 |
Treatment status | ||||||
Dopamine agonists (pramipexole) | 19 | 11 | 8 | NA | NA | NA |
Dopamine precursors (levodopa) | 3 | 2 | 1 | NA | NA | NA |
Agonist + precursor of dopamine | 5 | 2 | 3 | NA | NA | NA |
T0 | 27 | 15 | 12 | 22 | 12 | 10 |
T1 | 21 | 12 | 9 | 18 | 10 | 8 |
T2 | 9 | 4 | 5 | 12 | 7 | 5 |
Immunological parameters | ||||||
TNF-α (pg/mL) | 19.32 ± 17.86 | 22.93 ± 18.60 | 14.81 ± 16.54 | 26.17 ± 29.64 | 34.15 ± 33.20 | 16.59 ± 22.71 |
GM-CSF (pg/mL) | 34.69 ± 18.54 | 34.25 ± 20.35 | 35.27 ± 16.95 | 38.08 ± 44.51 | 30.90 ± 14.04 | 46.70 ± 65.05 |
TGF-β (pg/mL) | 4452.11 ± 630.46 | 4427.39 ± 202.12 | 4483.01 ± 941.07 | 4349.04 ± 563.05 | 4361.67 ± 717.53 | 4336.41 ± 392.52 |
IFN γ (pg/mL) | 6.28 ± 7.50 | 5.33 ± 6.22 | 7.47 ± 9.00 | 4.07 ± 3.34 | 4.39 ± 4.24 | 3.69 ± 1.93 |
IL-10a (pg/mL) | 3.09 ± 2.09 | 2.58 ± 1.95 | 3.71 ± 2.18 | 2.69 ± 2.54 | 3.12 ± 3.27 | 2.17 ± 1.20 |
IL-17a (pg/mL) | 1273.40 ± 1349.54 | 1245.07 ± 1407.68 | 1308.82 ± 1334.30 | 2250.72 ± 1365.93 | 2354.57 ± 1370.28 | 2126.10 ± 1423.70 |
Neutrophil/lymphocyte inflammation index (NLI) | 1.68 ± 0.48 | 1.72 ± 0.53 | 1.63 ± 0.41 | 1.99 ± 1.56 | 1.81 ± 0.58 | 2.26 ± 2.22 |
Systemic Inflammatory index (SII) | 398.75 ± 185.11 | 384.55 ± 166.88 | 418.11 ± 214.39 | 492.84 ± 454.88 | 415.91 ± 186.73 | 554.47 ± 688.78 |
Clinical scales for the staging of the functional disability of patients and depression | ||||||
HOEN and YAHR scale (median value and range) | 2 (1–4) | 2 (1–3) | 2 (1–4) | NA | NA | NA |
MDS-UPDRS I: Non-Motor Experiences of Daily Living (median value and range) | 2.5 (0–5) | 3 (0–5) | 2 (0–4) | NA | NA | NA |
MDS-UPDRS II: Motor Experiences of Daily Living (mean value ± SD) | 12.30 (±5.90) | 12.20 (±6.17) | 12.45 (±5.80) | NA | NA | NA |
MDS-UPDRS III: Motor Examination (mean value ± SD) | 32.69 (±16.53) | 31.06 (±14.37) | 34.90 (±19.60) | NA | NA | NA |
MDS-UPDRS IV: Motor Complications * | NA | NA | NA | NA | NA | NA |
MDS-UPDRS Total (mean value ±SD) | 47.53 (±22.38) | 46.13 (±21.14) | 49.45 (±24.88) | NA | NA | NA |
Schwab and England (Activities of Daily Living) scale (median value and range) | 90 (20–100) | 90 (50–100) | 80 (20–90) | 100 (90–100) | 100 (100–100) | 100 (90–100) |
Beck’s Depression Inventory (median value and range) | 10 (0–30) | 10 (0–23) | 10 (2–30) | 2.5 (0–21) | 1.5 (0–13) | 7 (0–21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Vázquez, A.; Sánchez-Badajos, S.; Ramírez-García, M.Á.; Alvarez-Luquín, D.; López-López, M.; Adalid-Peralta, L.V.; Monroy-Jaramillo, N. Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease. Genes 2023, 14, 1913. https://doi.org/10.3390/genes14101913
Ortega-Vázquez A, Sánchez-Badajos S, Ramírez-García MÁ, Alvarez-Luquín D, López-López M, Adalid-Peralta LV, Monroy-Jaramillo N. Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease. Genes. 2023; 14(10):1913. https://doi.org/10.3390/genes14101913
Chicago/Turabian StyleOrtega-Vázquez, Alberto, Salvador Sánchez-Badajos, Miguel Ángel Ramírez-García, Diana Alvarez-Luquín, Marisol López-López, Laura Virginia Adalid-Peralta, and Nancy Monroy-Jaramillo. 2023. "Longitudinal Changes in Mitochondrial DNA Copy Number and Telomere Length in Patients with Parkinson’s Disease" Genes 14, no. 10: 1913. https://doi.org/10.3390/genes14101913