Factors Influencing the Maturation and Developmental Competence of Yak (Bos grunniens) Oocytes In Vitro
Abstract
:1. Introduction
2. Samples
2.1. The Development Stage of Oocytes
2.2. The Layers of COCs
3. Endogenous Factor
3.1. Dynamic Transcripts and Protein Changes
3.2. Epigenetic Regulations
3.2.1. DNA Methylation
3.2.2. Histone Modification
3.2.3. miRNA
3.3. G Protein-Coupled Receptor 50 (GPR50)
4. Exogenous Factor
4.1. Growth Factor
4.2. Antioxidants
4.3. Microelement
4.4. Small Molecule Compounds
4.5. Hormones
4.6. Platelet-Activating Factor (PAF)
5. Environment Factor
5.1. Temperature
5.2. Oxygen
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, J.; Yue, S.; Du, J.; Xue, B.; Wang, L.; Peng, Q.; Zou, H.; Hu, R.; Jiang, Y.; Wang, Z.; et al. Integration of transcriptomic and metabolomic analysis of the mechanism of dietary N-carbamoylglutamate in promoting follicle development in yaks. Front. Vet. Sci. 2022, 9, 946893. [Google Scholar] [CrossRef] [PubMed]
- Zi, X.D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 2003, 59, 1303–1312. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shah, A.M.; Wang, Z.; Hu, R.; Zou, H.; Wang, X.; Cao, G.; Peng, Q.; Xue, B.; Wang, L.; et al. Comparing the gastrointestinal barrier function between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau. PeerJ 2020, 8, e9851. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ma, J.; Mo, L.; Xiong, Y.; Xiong, X.; Lan, D.; Fu, W.; Yin, S. Molecular cloning and characterization of STC1 gene and its functional analyses in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2023, 208, 185–193. [Google Scholar] [CrossRef]
- Yin, S.; Zhou, J.; Yang, L.; Yuan, Y.; Xiong, X.; Lan, D.; Li, J. Identification of microRNA transcriptome throughout the lifespan of yak (Bos grunniens) corpus luteum. Anim. Biotechnol. 2023, 34, 143–155. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, M.; Baloch, A.R.; Zhang, Q.; Wang, J.; Ma, R.; Xu, G.; Kashif, J.; Wang, L.; Fan, J.; et al. FGF10 enhances yak oocyte fertilization competence and subsequent blastocyst quality and regulates the levels of CD9, CD81, DNMT1, and DNMT3B. J. Cell. Physiol. 2019, 234, 17677–17689. [Google Scholar] [CrossRef]
- Niu, H.R.; Zi, X.D.; Xiao, X.; Xiong, X.R.; Zhong, J.C.; Li, J.; Wang, L.; Wang, Y. Developmental competence of frozen-thawed yak (Bos grunniens) oocytes followed by in vitro maturation and fertilization. Cryobiology 2014, 68, 152–154. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Y.; Du, W.; Zhao, C.; Wang, L.; Wang, H.; Liu, Y.; Li, R.; Li, N. In vitro development of yak (Bos grunniens) embryos generated by interspecies nuclear transfer. Anim. Reprod. Sci. 2007, 101, 45–59. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Dai, Y.; Du, W.; Zhao, C.; Wang, L.; Wang, H.; Li, R.; Liu, Y.; Wan, R.; et al. Nuclear reprogramming in embryos generated by the transfer of yak (Bos grunniens) nuclei into bovine oocytes and comparison with bovine-bovine SCNT and bovine IVF embryos. Theriogenology 2007, 67, 1331–1338. [Google Scholar] [CrossRef]
- Das, D.; Arur, S. Regulation of oocyte maturation: Role of conserved ERK signaling. Mol. Reprod. Dev. 2022, 89, 353–374. [Google Scholar] [CrossRef]
- Yin, S.; Jiang, X.; Jiang, H.; Gao, Q.; Wang, F.; Fan, S.; Khan, T.; Jabeen, N.; Khan, M.; Ali, A.; et al. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development 2017, 144, 2165–2174. [Google Scholar] [CrossRef]
- Sen, A.; Caiazza, F. Oocyte maturation: A story of arrest and release. Front. Biosci. (Schol. Ed.) 2013, 5, 451–477. [Google Scholar] [CrossRef] [PubMed]
- Duncan, F.E.; Gerton, J.L. Mammalian oogenesis and female reproductive aging. Aging 2018, 10, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Telfer, E.E.; Andersen, C.Y. In vitro growth and maturation of primordial follicles and immature oocytes. Fertil. Steril. 2021, 115, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Strączyńska, P.; Papis, K.; Morawiec, E.; Czerwiński, M.; Gajewski, Z.; Olejek, A.; Bednarska-Czerwińska, A. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. Reprod. Biol. Endocrinol. 2022, 20, 37. [Google Scholar] [CrossRef]
- Llonch, S.; Barragán, M.; Nieto, P.; Mallol, A.; Elosua-Bayes, M.; Lorden, P.; Ruiz, S.; Zambelli, F.; Heyn, H.; Vassena, R.; et al. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell 2021, 20, e13360. [Google Scholar] [CrossRef]
- Alcoba, D.D.; Pimentel, A.M.; Brum, I.S.; Corleta, H.E. Developmental potential of in vitro or in vivo matured oocytes. Zygote 2015, 23, 93–98. [Google Scholar] [CrossRef]
- Kim, D.H.; Ko, D.S.; Lee, H.C.; Lee, H.J.; Park, W.I.; Kim, S.S.; Park, J.K.; Yang, B.C.; Park, S.B.; Chang, W.K.; et al. Comparison of maturation, fertilization, development, and gene expression of mouse oocytes grown in vitro and in vivo. J. Assist. Reprod. Genet. 2004, 21, 233–240. [Google Scholar] [CrossRef]
- Liu, B. Optimization of Yak In-Vitro Embryo Production and Analysis of Apoptosis. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2013. [Google Scholar]
- Yan, P.; Guo, X.; Xv, B.Z.; En, R.; Zeng, Y.F. White yak oocyte maturation in vitro. China Herbiv. Sci. 2006, 04, 7–9. [Google Scholar]
- Yan, P.; Xv, B.Z.; Guo, X.; Pan, H.P. In vitro maturation of yak oocytes. Anim. Husb. Vet. Med. 2006, 38, 14–16. [Google Scholar]
- Li, T.Q. Oocytes In Vitro Maturation of Tianzhu White Yak. Master’s Thesis, Gansu Agricultural University, Lanzhou, China, 2008. [Google Scholar]
- Wang, Y.H.; SuoLang, S.Z.; Gong, G.; Wang, G.; Wang, D.J.; Xv, Y.; Duan, Y.F. In vitro mature culture of Nyingchi yak oocytes. J. Plateau Agric. 2018, 2, 40–43. [Google Scholar] [CrossRef]
- Gegenfurtner, K.; Flenkenthaler, F.; Fröhlich, T.; Wolf, E.; Arnold, G.J. The impact of transcription inhibition during in vitro maturation on the proteome of bovine oocytes. Biol. Reprod. 2020, 103, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Andreu-Vieyra, C.; Lin, Y.N.; Matzuk, M.M. Mining the oocyte transcriptome. Trends Endocrinol. Metab. 2006, 17, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, K.F.; Farin, C.E. Gene transcription and regulation of oocyte maturation. Reprod. Fertil. Dev. 2004, 16, 55–67. [Google Scholar] [CrossRef]
- Pei, J.; Xiong, L.; Guo, S.; Wang, X.; Bao, P.; Wu, X.; Yan, P.; Guo, X. A single-cell transcriptomic atlas characterizes cell types and their molecular features in yak ovarian cortex. Faseb J. 2023, 37, e22718. [Google Scholar] [CrossRef]
- Lan, D.L.; Xiong, X.R.; Lin, B.S.; Chen, Y.B.; Hu, M.; Su, X.S.; Li, J. Transcriptome analysis of yak mataphase Ⅱ (MⅡ) oocytes by a micro-tanscriptome sequencing method. Acta Vet. Zootech. Sin. 2014, 45, 722–732. [Google Scholar]
- Lan, D.L.; Xiong, X.R.; Chen, Y.B.; Ai, Y.; Li, J.; MIPAM Tserang-donko. Differential transcriptome analysis of yak oocytes in vitro maturation. Sci. Sin. (Vitea) 2017, 47, 1099–1112. [Google Scholar]
- Zhao, Y.L.; Fu, Q.; Chen, F.M.; Zhang, J.; Ren, Z.L. Proteomic profile identification and analysis of Tibet yak oocytes. Chin. J. Vet. Sci. 2018, 38, 1804–1809. [Google Scholar] [CrossRef]
- Huang, Y. iTRAQ-Based Comparative Proteomic Analysis of Oocytes In Vitro Maturation for Yak. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2016. [Google Scholar]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Jia, J.; Du, T.; Zhang, N.; Tang, Y.; Fang, Y.; Fang, D. Overview of Histone Modification. Adv. Exp. Med. Biol. 2021, 1283, 1–16. [Google Scholar] [CrossRef]
- Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Golding, M.C.; Williamson, G.L.; Stroud, T.K.; Westhusin, M.E.; Long, C.R. Examination of DNA methyltransferase expression in cloned embryos reveals an essential role for Dnmt1 in bovine development. Mol. Reprod. Dev. 2011, 78, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Bell, D.W.; Haber, D.A.; Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999, 99, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Saitou, M.; Kagiwada, S.; Kurimoto, K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 2012, 139, 15–31. [Google Scholar] [CrossRef]
- Li, Q. Application of Ascorbic Aicd in the Regulation of DNA Methylation in Yak Oocytes and IVF Embryos. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar]
- Li, Q.; Pan, Y.; He, H.; Hu, X.; Zhao, T.; Jiang, J.; Cui, Y.; Xu, G.; Wang, L.; He, J.; et al. DNA methylation regulated by ascorbic acids in yak preimplantation embryo helps to improve blastocyst quality. Mol. Reprod. Dev. 2019, 86, 1138–1148. [Google Scholar] [CrossRef]
- Yoshizawa-Sugata, N.; Masai, H. Histone Modification Analysis of Low-Mappability Regions. Methods Mol. Biol. 2023, 2519, 163–185. [Google Scholar] [CrossRef]
- Lawrence, M.; Daujat, S.; Schneider, R. Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet. 2016, 32, 42–56. [Google Scholar] [CrossRef]
- Kooistra, S.M.; Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 2012, 13, 297–311. [Google Scholar] [CrossRef]
- Wu, Y.W.; Li, S.; Zheng, W.; Li, Y.C.; Chen, L.; Zhou, Y.; Deng, Z.Q.; Lin, G.; Fan, H.Y.; Sha, Q.Q. Dynamic mRNA degradome analyses indicate a role of histone H3K4 trimethylation in association with meiosis-coupled mRNA decay in oocyte aging. Nat. Commun. 2022, 13, 3191. [Google Scholar] [CrossRef]
- He, M.; Zhang, T.; Yang, Y.; Wang, C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front. Cell Dev. Biol. 2021, 9, 654028. [Google Scholar] [CrossRef]
- Dahl, J.A.; Jung, I.; Aanes, H.; Greggains, G.D.; Manaf, A.; Lerdrup, M.; Li, G.; Kuan, S.; Li, B.; Lee, A.Y.; et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 2016, 537, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, P.; Li, W.; Yang, Y.; Tian, Y.; Wang, X.; Chen, S.; Yang, Y.; Huang, T.; Zhao, T.; et al. KDM1A promotes tumor cell invasion by silencing TIMP3 in non-small cell lung cancer cells. Oncotarget 2016, 7, 27959–27974. [Google Scholar] [CrossRef] [PubMed]
- Han, J. Analysis of the Expression Profile of Yak KDM1A and Its Effect on Meiosis Maturation of Oocyte. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2019. [Google Scholar]
- Han, J.; Xiong, X.R.; Xiong, Y.; Wu, J.B.; Li, J. Effects of KDM1A on the meiotic maturation and develomental potential of yak oocytes. Acta Vet. Zootechica Sin. 2020, 51, 2433–2442. [Google Scholar]
- Tsukada, Y.; Fang, J.; Erdjument-Bromage, H.; Warren, M.E.; Borchers, C.H.; Tempst, P.; Zhang, Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006, 439, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.Y. The Study of Cloning, Expression Profile of Yak KDM2 and Its Role in the Meiosis of Oocyte. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2018. [Google Scholar]
- Ma, R.; Zhang, Y.; Zhang, L.; Han, J.; Rui, R. Sirt1 protects pig oocyte against in vitro aging. Anim. Sci. J. 2015, 86, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Iljas, J.D.; Wei, Z.; Homer, H.A. Sirt1 sustains female fertility by slowing age-related decline in oocyte quality required for post-fertilization embryo development. Aging Cell 2020, 19, e13204. [Google Scholar] [CrossRef]
- Xiong, X.R.; Wang, Y.; Li, J.; Zi, X.D.; Qiu, X. Effects of SIRT1 on the in vitro maturation and aging of yak oocytes. Acta Vet. Et Zootech. Sin. 2019, 50, 2440–2448. [Google Scholar]
- Griffiths-Jones, S.; Grocock, R.J.; van Dongen, S.; Bateman, A.; Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006, 34, D140–D144. [Google Scholar] [CrossRef]
- Zeng, Y.; Yi, R.; Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 2003, 100, 9779–9784. [Google Scholar] [CrossRef]
- Dehghan, Z.; Mohammadi-Yeganeh, S.; Salehi, M. MiRNA-155 regulates cumulus cells function, oocyte maturation, and blastocyst formation. Biol. Reprod. 2020, 103, 548–559. [Google Scholar] [CrossRef]
- Luo, X.; Chen, X.; Lv, Y.; Han, Y.; Qu, X.; Zhang, Y.; Li, X.; Yu, Y.; Jin, Y. MicroRNA-101 regulates oocyte maturation in vitro via targeting HAS2 in porcine cumulus cells. Theriogenology 2022, 187, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Tanga, B.M.; Fang, X.; Bang, S.; Seong, G.; De Zoysa, M.; Saadeldin, I.M.; Lee, S.; Cho, J. MiRNA-155 inhibition enhances porcine embryo preimplantation developmental competence by upregulating ZEB2 and downregulating ATF4. Theriogenology 2022, 183, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.R.; Lan, D.L.; Li, J.; Zi, X.D.; Li, M.Y. Identification of candidate miRNAs and expression profile of yak oocytes before and after in vitro maturation by high-throughput sequencing. Reprod. Domest. Anim. 2016, 51, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Yang, M.; Yu, H.; Hu, Y.; Yang, L.; Zhu, Y.; Fei, X.; Pan, B.; Xiong, Y.; Fu, W.; et al. MicroRNA-342-3p regulates yak oocyte meiotic maturation by targeting DNA methyltransferase 1. Reprod. Domest. Anim. 2022, 57, 761–770. [Google Scholar] [CrossRef]
- Drew, J.E.; Barrett, P.; Mercer, J.G.; Moar, K.M.; Canet, E.; Delagrange, P.; Morgan, P.J. Localization of the melatonin-related receptor in the rodent brain and peripheral tissues. J. Neuroendocrinol. 2001, 13, 453–458. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, Y.; Xiong, X.R.; Chai, Z.X.; Ji, W.H.; Lan, D.L.; MIPAM Tserang-donko. Study on the expression and subcellular localization of G Protein-coupled Receptor 50 during in vitro maturation process of yak oocytes. China Anim. Husb. Vet. Med. 2021, 48, 3387–3393. [Google Scholar] [CrossRef]
- Chen, Y.; Zeng, R.; Kou, J.; Xiong, X.; Yao, Y.; Fu, W.; Yin, S.; Lan, D. GPR50 participates in and promotes yak oocyte maturation: A new potential oocyte regulatory molecule. Theriogenology 2022, 181, 34–41. [Google Scholar] [CrossRef]
- Bezerra, F.T.G.; Paulino, L.; Silva, B.R.; Silva, A.W.B.; Souza Batista, A.L.P.; Silva, J.R.V. Effects of epidermal growth factor and progesterone on oocyte meiotic resumption and the expression of maturation-related transcripts during prematuration of oocytes from small and medium-sized bovine antral follicles. Reprod. Fertil. Dev. 2020, 32, 1190–1199. [Google Scholar] [CrossRef]
- Muhammad, T.; Li, M.; Wang, J.; Huang, T.; Zhao, S.; Zhao, H.; Liu, H.; Chen, Z.J. Roles of insulin-like growth factor II in regulating female reproductive physiology. Sci. China Life Sci. 2020, 63, 849–865. [Google Scholar] [CrossRef]
- Currin, L.; Glanzner, W.G.; Gutierrez, K.; de Macedo, M.P.; Guay, V.; Baldassarre, H.; Bordignon, V. Optimizing swine in vitro embryo production with growth factor and antioxidant supplementation during oocyte maturation. Theriogenology 2022, 194, 133–143. [Google Scholar] [CrossRef]
- Richter, K.S. The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr. Opin. Obstet. Gynecol. 2008, 20, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Dadi, T.D.; Li, M.W.; Lloyd, K.C. Decreased growth factor expression through RNA interference inhibits development of mouse preimplantation embryos. Comp. Med. 2009, 59, 331–338. [Google Scholar] [PubMed]
- Yousef, N.A.; Hussein, H.A.S.; Badr, M.R.; Ahmed, A.E. Effect of Epidermal Growth Factors (EGF) on the Maturation and Developmental Competence of Buffalos’ Oocytes and Embryo Stages In Vitro. SVU-Int. J. Vet. Sci. 2018, 1, 85–94. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, J.; Li, M.; Yan, L.; Zhao, Y.; Lian, Y.; Li, R.; Liu, P.; Qiao, J. Effects of combined epidermal growth factor, brain-derived neurotrophic factor and insulin-like growth factor-1 on human oocyte maturation and early fertilized and cloned embryo development. Hum. Reprod. 2012, 27, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Warzych, E.; Peippo, J.; Szydlowski, M.; Lechniak, D. Supplements to in vitro maturation media affect the production of bovine blastocysts and their apoptotic index but not the proportions of matured and apoptotic oocytes. Anim. Reprod. Sci. 2007, 97, 334–343. [Google Scholar] [CrossRef]
- Ma, L.; Yuan, N. The effect of in vitro culture time and EGF on the yak oocyte maturation and parthenogenetic embryos in vitro development. J. Southwest Minzu Univ. (Nat. Sci. Ed.) 2013, 39, 865–868. [Google Scholar]
- Pan, Y.Y.; Li, Q.; Cui, Y.; Fan, J.F.; Yang, K.; He, J.F.; Yu, S.J. The expression of EGF and EGFR in yak oocyte and its function on development competence of embryo. Sci. Agric. Sin. 2015, 48, 2439–2448. [Google Scholar]
- Stuard, W.L.; Titone, R.; Robertson, D.M. The IGF/Insulin-IGFBP Axis in Corneal Development, Wound Healing, and Disease. Front. Endocrinol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Bailes, J.; Soloviev, M. Insulin-Like Growth Factor-1 (IGF-1) and Its Monitoring in Medical Diagnostic and in Sports. Biomolecules 2021, 11, 217. [Google Scholar] [CrossRef]
- Pan, Y.; Cui, Y.; He, H.; Baloch, A.R.; Fan, J.; Xu, G.; He, J.; Yang, K.; Li, G.; Yu, S. Developmental competence of mature yak vitrified-warmed oocytes is enhanced by IGF-I via modulation of CIRP during in vitro maturation. Cryobiology 2015, 71, 493–498. [Google Scholar] [CrossRef]
- Liu, L.; Shi, Q.; Wang, K.; Qian, Y.; Zhou, L.; Bellusci, S.; Chen, C.; Dong, N. Fibroblast growth factor 10 protects against particulate matter-induced lung injury by inhibiting oxidative stress-mediated pyroptosis via the PI3K/Akt/Nrf2 signaling pathway. Int. Immunopharmacol. 2022, 113, 109398. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N. FGF10: A multifunctional mesenchymal-epithelial signaling growth factor in development, health, and disease. Cytokine Growth Factor Rev. 2016, 28, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, D.; Panduri, V.; Kamp, D.W. Fibroblast growth factor-10 prevents asbestos-induced alveolar epithelial cell apoptosis by a mitogen-activated protein kinase-dependent mechanism. Am. J. Respir. Cell Mol. Biol. 2005, 32, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Hu, W.; Zhang, S.; Ren, C.; Lin, S.; Zhou, Z.; Wu, H.; Yin, J.; Tan, L. Fibroblast growth factor 10 attenuates chronic obstructive pulmonary disease by protecting against glycocalyx impairment and endothelial apoptosis. Respir. Res. 2022, 23, 269. [Google Scholar] [CrossRef]
- Chaves, R.N.; Lima-Verde, I.B.; Celestino, J.J.; Duarte, A.B.; Alves, A.M.; Matos, M.H.; Campello, C.C.; Name, K.P.; Báo, S.N.; Buratini, J., Jr.; et al. Fibroblast growth factor-10 maintains the survival and promotes the growth of cultured goat preantral follicles. Domest. Anim. Endocrinol. 2010, 39, 249–258. [Google Scholar] [CrossRef]
- Du, S.; Liu, X.; Deng, K.; Zhou, W.; Lu, F.; Shi, D. The expression pattern of fibroblast growth factor 10 and its receptors during buffalo follicular development. Int. J. Clin. Exp. Pathol. 2018, 11, 4934–4941. [Google Scholar]
- Rose-John, S. Interleukin-6 Family Cytokines. Cold Spring Harb. Perspect. Biol. 2018, 10, a028415. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, Y.; Li, Q.; Ding, T.; Niayale, R.; Zhang, T.; Wang, J.; Wang, Y.; Zhao, L.; Han, X.; et al. Leukemia inhibitory factor enhances the development and subsequent blastocysts quality of yak oocytes in vitro. Front. Vet. Sci. 2022, 9, 997709. [Google Scholar] [CrossRef]
- Cao, B.; Qin, J.; Pan, B.; Qazi, I.H.; Ye, J.; Fang, Y.; Zhou, G. Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells 2022, 11, 3573. [Google Scholar] [CrossRef]
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal 2006, 8, 1865–1879. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.; Wang, L.; Tan, F.; Song, H.; Zhou, J.; Li, F. Oxidative stress in oocyte aging and female reproduction. J. Cell. Physiol. 2021, 236, 7966–7983. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Tiwari, M.; Pandey, A.N.; Shrivastav, T.G.; Chaube, S.K. Impact of stress on oocyte quality and reproductive outcome. J. Biomed. Sci. 2016, 23, 36. [Google Scholar] [CrossRef] [PubMed]
- Bar-El Dadon, S.; Reifen, R. Vitamin A and the epigenome. Crit. Rev. Food Sci. Nutr. 2017, 57, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, S.; Kitagawa, M.; Imai, H.; Yamada, M. The roles of vitamin A for cytoplasmic maturation of bovine oocytes. J. Reprod. Dev. 2005, 51, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.W.; Burnet, G.; Spiller, C.M.; Cheung, F.K.M.; Chawengsaksophak, K.; Koopman, P.; Bowles, J. Identification of regulatory elements required for Stra8 expression in fetal ovarian germ cells of the mouse. Development 2021, 148, dev194977. [Google Scholar] [CrossRef] [PubMed]
- Manku, G.; Wang, Y.; Merkbaoui, V.; Boisvert, A.; Ye, X.; Blonder, J.; Culty, M. Role of retinoic acid and platelet-derived growth factor receptor cross talk in the regulation of neonatal gonocyte and embryonal carcinoma cell differentiation. Endocrinology 2015, 156, 346–359. [Google Scholar] [CrossRef]
- Ji, W.H.; Wang, Y.L.; He, H.H.; Fu, W.; Lan, D.L. Effects of vitamin A on the maturation and subsequent development of yak oocytes in vitro. China Anim. Husb. Vet. Med. 2022, 49, 4707–4714. [Google Scholar] [CrossRef]
- Wang, Y.L. A Preliminary Study on the Effect of Vitamin A on the Maturation of Yak Oocytes In Vitro and Its Mechanism of Actin. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2022. [Google Scholar]
- Knight, J.; Madduma-Liyanage, K.; Mobley, J.A.; Assimos, D.G.; Holmes, R.P. Ascorbic acid intake and oxalate synthesis. Urolithiasis 2016, 44, 289–297. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, T.; He, H.; Robert, N.; Ding, T.; Hu, X.; Zhang, T.; Pan, Y.; Cui, Y.; Yu, S. Ascorbic acid protects the toxic effects of aflatoxin B(1) on yak oocyte maturation. Anim. Sci. J. 2022, 93, e13702. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Fuentes-Broto, L. Melatonin: A multitasking molecule. Prog. Brain Res. 2010, 181, 127–151. [Google Scholar] [CrossRef]
- Peng, W.; Huang, R.; Shu, S.; Xv, S.R.; Zhang, J. Research of metatonin inhibits oxidative stress and promotes oocyte maturation of yak in vitro. Chin. Qinghai J. Anim. Vet. Sci. 2021, 51, 1–6+66. [Google Scholar]
- Peng, W. Analysis of Ovarian Differences in Cold and Warm Season and the Effects of Melatonin on Oocyte Maturation and Embryo Development of Yak In Vitro. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2019. [Google Scholar]
- Li, R.Z. Effects and Mechanisms of Low Oxygen Concentration on In Vitro Maturation and Developmental Competence of Yak Oocytes. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2021. [Google Scholar]
- Benazic, S.; Silconi, Z.B.; Jevtovic, A.; Jurisevic, M.; Milovanovic, J.; Mijajlovic, M.; Nikolic, M.; Kanjevac, T.; Potočňák, I.; Samoľová, E.; et al. The Zn(S-pr-thiosal)(2) complex attenuates murine breast cancer growth by inducing apoptosis and G1/S cell cycle arrest. Future Med. Chem. 2020, 12, 897–914. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Lan, D.; Li, J.; Lin, Y.; Zi, X. Effects of Zinc Supplementation During In Vitro Maturation on Meiotic Maturation of Oocytes and Developmental Capacity in Yak. Biol. Trace Elem. Res. 2018, 185, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.J. Effects of Zinc Supplementation on Meiosis Maturation and Development of Yak Oocytes. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2017. [Google Scholar]
- Feng, Y.; Zhao, X.; Ruan, Z.Y.; Shen, P.L.; Shi, D.S.; Lu, F.H. Effects of Zinc on bovine oocytes in vitro maturation and early embryonic development. Chin. J. Anim. Sci. 2019, 55, 14–19. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Chen, Z. Mechanism of Ca2+ Regulating Maturation through CaMKⅡ in Yak. Master’s Thesis, Northwest Minzu University, Lanzhou, China, 2022. [Google Scholar]
- Saito, Y.; Yoshida, Y.; Akazawa, T.; Takahashi, K.; Niki, E. Cell death caused by selenium deficiency and protective effect of antioxidants. J. Biol. Chem. 2003, 278, 39428–39434. [Google Scholar] [CrossRef]
- Zeng, H. Selenium as an essential micronutrient: Roles in cell cycle and apoptosis. Molecules 2009, 14, 1263–1278. [Google Scholar] [CrossRef]
- Avery, J.C.; Hoffmann, P.R. Selenium, Selenoproteins, and Immunity. Nutrients 2018, 10, 1203. [Google Scholar] [CrossRef]
- Xiong, X.; Lan, D.; Li, J.; Lin, Y.; Li, M. Selenium supplementation during in vitro maturation enhances meiosis and developmental capacity of yak oocytes. Anim. Sci. J. 2018, 89, 298–306. [Google Scholar] [CrossRef]
- Zhang, H.; Kong, Q.; Wang, J.; Jiang, Y.; Hua, H. Complex roles of cAMP-PKA-CREB signaling in cancer. Exp. Hematol. Oncol. 2020, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Li, J. The art of oocyte meiotic arrest regulation. Reprod. Biol. Endocrinol. 2019, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Appeltant, R.; Somfai, T.; Maes, D.; Van Soom, A.; Kikuchi, K. Porcine oocyte maturation in vitro: Role of cAMP and oocyte-secreted factors—A practical approach. J. Reprod. Dev. 2016, 62, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.R.; Wei, Y.; Qi, S.T.; Chen, L.; Zhang, Q.H.; Ma, J.Y.; Luo, Y.B.; Wang, Y.P.; Hou, Y.; Schatten, H.; et al. The G protein coupled receptor 3 is involved in cAMP and cGMP signaling and maintenance of meiotic arrest in porcine oocytes. PLoS ONE 2012, 7, e38807. [Google Scholar] [CrossRef]
- Vaccari, S.; Horner, K.; Mehlmann, L.M.; Conti, M. Generation of mouse oocytes defective in cAMP synthesis and degradation: Endogenous cyclic AMP is essential for meiotic arrest. Dev. Biol. 2008, 316, 124–134. [Google Scholar] [CrossRef]
- Ramos Leal, G.; Santos Monteiro, C.A.; Souza-Fabjan, J.M.G.; de Paula Vasconcelos, C.O.; Garcia Nogueira, L.A.; Reis Ferreira, A.M.; Varella Serapião, R. Role of cAMP modulator supplementations during oocyte in vitro maturation in domestic animals. Anim. Reprod. Sci. 2018, 199, 1–14. [Google Scholar] [CrossRef]
- Ozturk, S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022, 21, 547–571. [Google Scholar] [CrossRef]
- Xiong, X.R.; Lan, D.L.; Li, J.; Lin, Y.Q.; Li, M.Y. Supplementation of cilostazol during in vitro maturation enhances the meiosis and developmental competence of yak oocytes by influencing cAMP content and mRNA expression. Anim. Reprod. Sci. 2017, 186, 21–30. [Google Scholar] [CrossRef]
- Wesierska-Gadek, J.; Kramer, M.P.; Maurer, M. Resveratrol modulates roscovitine-mediated cell cycle arrest of human MCF-7 breast cancer cells. Food Chem. Toxicol. 2008, 46, 1327–1333. [Google Scholar] [CrossRef]
- Liu, Y. The Effects of Roscovitine on Granulosa Cell Culture and Oocyte In Vitro Maturation of the Yak. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2022. [Google Scholar]
- Caixeta, F.M.; Sousa, R.V.; Guimarães, A.L.; Leme, L.O.; Sprícigo, J.F.; Netto, S.B.; Pivato, I.; Dode, M.A. Meiotic arrest as an alternative to increase the production of bovine embryos by somatic cell nuclear transfer. Zygote 2017, 25, 32–40. [Google Scholar] [CrossRef]
- Jing, T. The Effects of CNP on Oocyte Maturation and Embryo Development of the Yak. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2021. [Google Scholar]
- Wang, Q.; Ratchford, A.M.; Chi, M.M.; Schoeller, E.; Frolova, A.; Schedl, T.; Moley, K.H. Maternal diabetes causes mitochondrial dysfunction and meiotic defects in murine oocytes. Mol. Endocrinol. 2009, 23, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Paczkowski, M.; Silva, E.; Schoolcraft, W.B.; Krisher, R.L. Comparative importance of fatty acid beta-oxidation to nuclear maturation, gene expression, and glucose metabolism in mouse, bovine, and porcine cumulus oocyte complexes. Biol. Reprod. 2013, 88, 111. [Google Scholar] [CrossRef] [PubMed]
- Paczkowski, M.; Schoolcraft, W.B.; Krisher, R.L. Fatty acid metabolism during maturation affects glucose uptake and is essential to oocyte competence. Reproduction 2014, 148, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Sutton-McDowall, M.L.; Gilchrist, R.B.; Thompson, J.G. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010, 139, 685–695. [Google Scholar] [CrossRef]
- Dang-Nguyen, T.Q.; Nguyen, H.T.; Somfai, T.; Wells, D.; Men, N.T.; Viet-Linh, N.; Noguchi, J.; Kaneko, H.; Kikuchi, K.; Nagai, T. Sucrose assists selection of high-quality oocytes in pigs. Anim. Sci. J. 2018, 89, 880–887. [Google Scholar] [CrossRef]
- De Santis, L.; Cino, I.; Rabellotti, E.; Papaleo, E.; Calzi, F.; Fusi, F.M.; Brigante, C.; Ferrari, A. Oocyte cryopreservation: Clinical outcome of slow-cooling protocols differing in sucrose concentration. Reprod. Biomed. Online 2007, 14, 57–63. [Google Scholar] [CrossRef]
- Ongaratto, F.L.; Rodriguez-Villamil, P.; Bertolini, M.; Carlson, D.F. Influence of oocyte selection, activation with a zinc chelator and inhibition of histone deacetylases on cloned porcine embryo and chemically activated oocytes development. Zygote 2020, 28, 286–290. [Google Scholar] [CrossRef]
- Shi, X.; Xiong, X.R.; Lan, D.L.; Hu, J.J.; Cai, W.Y.; Zhang, D.W.; Li, J. Effect of sugar on in vitro maturation and development competence of yak oocytes. China Anim. Husb. Vet. Meducine 2017, 44, 155–160. [Google Scholar] [CrossRef]
- Xiao, X.; Zi, X.D.; Niu, H.R.; Xiong, X.R.; Zhong, J.C.; Li, J.; Wang, L.; Wang, Y. Effect of addition of FSH, LH and proteasome inhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grunniens) oocytes. Reprod. Biol. Endocrinol. 2014, 12, 30. [Google Scholar] [CrossRef]
- He, H.H.; Pan, Y.Y.; Zhang, H.Z.; Li, Q.; Wang, M.; Cui, Y.; Fan, J.F.; Yu, S.J. The effects of Follicle-stimulating Hormone (FSH) on the expression of EGF and EGFR in yak oocytes and apoptpsis. Acta Vet. Zootech. Sin. 2018, 49, 1899–1907. [Google Scholar]
- Krasnow, J.S.; Hickey, G.J.; Richards, J.S. Regulation of aromatase mRNA and estradiol biosynthesis in rat ovarian granulosa and luteal cells by prolactin. Mol. Endocrinol. 1990, 4, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.X. The Effect and Regulation of Estrogen to Autophagy in Procine Oocyte. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2021. [Google Scholar]
- Yang, B.X. Study on the Role of Estradiol in Ovine Cumulus-Oocyte Complexes Cultured In Vitro. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2021. [Google Scholar]
- Lv, L.H.; Li, F.Z.; Yue, W.B. Effect of different concentrations of estradiol added to maturation fluid on the maturation of goat oocytes. Heilongjiang Anim. Sci. Vet. Med. 2008, 37–38. [Google Scholar] [CrossRef]
- Jin, H.X.; Sun, Y.P.; Xin, Z.M.; Su, Y.C.; Guo, Y.H. Effects of 17 beta-estradiol on maturation and embryo development competence of mouse oocytes in vitro. J. Zhengzhou Univ. (Med. Sci.) 2008, 1137–1139. [Google Scholar] [CrossRef]
- Xiao, H.W.; Hua, Z.D.; Zhang, L.P.; Ren, H.Y.; Liu, X.M.; Hua, W.J.; Li, L.; Bi, Y.Z.; Zheng, X.M. Effect of 17-beta-estrodiol (E2) in procine oocytes maturation and fertilized embryos’ development in vitro. Hubei Agric. Sci. 2015, 54, 5660–5661+5665. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, M.; Wang, L.; Zhang, Q.; Baloch, A.R.; He, H.; Xu, G.; Soomro, J.; Cui, Y.; Yu, S. Estrogen improves the development of yak (Bos grunniens) oocytes by targeting cumulus expansion and levels of oocyte-secreted factors during in vitro maturation. PLoS ONE 2020, 15, e0239151. [Google Scholar] [CrossRef]
- Kriegsfeld, L.J.; Gibson, E.M.; Williams, W.P., 3rd; Zhao, S.; Mason, A.O.; Bentley, G.E.; Tsutsui, K. The roles of RFamide-related peptide-3 in mammalian reproductive function and behaviour. J. Neuroendocrinol. 2010, 22, 692–700. [Google Scholar] [CrossRef]
- Mamgain, A.; Sawyer, I.L.; Timajo, D.A.M.; Rizwan, M.Z.; Evans, M.C.; Ancel, C.M.; Inglis, M.A.; Anderson, G.M. RFamide-Related Peptide Neurons Modulate Reproductive Function and Stress Responses. J. Neurosci. 2021, 41, 474–488. [Google Scholar] [CrossRef]
- Xiong, X.; Hu, Y.; Pan, B.; Zhu, Y.; Fei, X.; Yang, Q.; Xie, Y.; Xiong, Y.; Lan, D.; Fu, W.; et al. RFRP-3 Influences Apoptosis and Steroidogenesis of Yak Cumulus Cells and Compromises Oocyte Meiotic Maturation and Subsequent Developmental Competence. Int. J. Mol. Sci. 2023, 24, 7000. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Sun, X.J.; Wang, J.L.; Ma, R.; Yu, S.J.; Pan, Y.Y. Differential expression analysis of CYP19A1 during follicular development and oocyte maturation in yaks. Gansu Anim. Husb. Vet. 2021, 51, 37–42. [Google Scholar] [CrossRef]
- Wang, L.B.; Wang, M.; Sun, Y.; Chen, R.; Zhang, T.T.; Huang, Z.H.; Zhang, Q.; Yu, S.J.; Pan, Y.Y. CYP19A1 promotes autophagy and early development ability of yak oocytes by regulating the levels of endogenous estradiol. Acta Vet. Zootech. Sin. 2022, 53, 4283–4295. [Google Scholar]
- Harper, M.J. Platelet-activating factor: A paracrine factor in preimplantation stages of reproduction? Biol. Reprod. 1989, 40, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Tiemann, U. The role of platelet-activating factor in the mammalian female reproductive tract. Reprod. Domest. Anim. 2008, 43, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. The Effects of PAF on Oocyte Maturation and Embryo Development of the Yak. Master’s Thesis, Southwest Minzu University, Chengdu, China, 2019. [Google Scholar]
- Wang, Q.; Xiong, Y.; Zi, X.D. Effects of PFA supplementation during in vitro maturation medium on yak oocyte development competence and gene expression. Acta Vet. Zootech. Sin. 2020, 51, 514–523. [Google Scholar]
- Pang, B.; Zhao, X.Q.; Guo, Z.L.; Qv, L.; Yu, H.H.; Guo, S.C. Influence of different ovary storage temperature on oocyte in vitro maturation and discovery of yak oocyte maturation cultivation methods. Xinjiang Agric. Sci. 2012, 49, 1158–1164. [Google Scholar]
- Ma, L.; Li, Z.Q.; Xiong, X.R. The effect of yak ovarian transport condition on the oocytes quality and embryos in vitro development. J. Southwest Minzu Univ. (Nat. Sci. Ed.) 2013, 39, 1–4. [Google Scholar]
- Bennemann, J.; Grothmann, H.; Wrenzycki, C. Reduced oxygen concentration during in vitro oocyte maturation alters global DNA methylation in the maternal pronucleus of subsequent zygotes in cattle. Mol. Reprod. Dev. 2018, 85, 849–857. [Google Scholar] [CrossRef]
- Fathollahipour, S.; Patil, P.; Leipzig, N. Oxygen Regulation in Development: Lessons from Embryogenesis towards Tissue Engineering. Cells Tissues Organs 2018, 205, 350–371. [Google Scholar] [CrossRef]
- Lim, M.; Thompson, J.G.; Dunning, K.R. HYPOXIA AND REPRODUCTIVE HEALTH: Hypoxia and ovarian function: Follicle development, ovulation, oocyte maturation. Reproduction 2021, 161, F33–F40. [Google Scholar] [CrossRef]
- Belli, M.; Antonouli, S.; Palmerini, M.G.; Bianchi, S.; Bernardi, S.; Khalili, M.A.; Donfrancesco, O.; Nottola, S.A.; Macchiarelli, G. The effect of low and ultra-low oxygen tensions on mammalian embryo culture and development in experimental and clinical IVF. Syst. Biol. Reprod. Med. 2020, 66, 229–235. [Google Scholar] [CrossRef]
- Sánchez-Ajofrín, I.; Iniesta-Cuerda, M.; Sánchez-Calabuig, M.J.; Peris-Frau, P.; Martín-Maestro, A.; Ortiz, J.A.; Del Rocío Fernández-Santos, M.; Garde, J.J.; Gutiérrez-Adán, A.; Soler, A.J. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim. Reprod. Sci. 2020, 213, 106279. [Google Scholar] [CrossRef]
- Hashimoto, S.; Minami, N.; Takakura, R.; Yamada, M.; Imai, H.; Kashima, N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes. Mol. Reprod. Dev. 2000, 57, 353–360. [Google Scholar] [CrossRef] [PubMed]
- He, H.H. Study on the Effect of Low Oxygen Concentration on Developmental Competence of Yak Oocyte Maturation, Pre-Implantation Embryos and Its Mechanisms. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2020. [Google Scholar]
- He, H.; Zhang, H.; Pan, Y.; Zhang, T.; Yang, S.; Liu, M.; Robert, N.; Wang, J.; Zhao, T.; Zhao, L.; et al. Low oxygen concentration improves yak oocyte maturation and inhibits apoptosis through HIF-1 and VEGF. Reprod. Domest. Anim. 2022, 57, 381–392. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Zhang, H.; Li, Q.; Fan, J.; Pan, Y.; Zhang, T.; Robert, N.; Zhao, L.; Hu, X.; Han, X.; et al. Low oxygen concentrations improve yak oocyte maturation and enhance the developmental competence of preimplantation embryos. Theriogenology 2020, 156, 46–58. [Google Scholar] [CrossRef]
- Li, R.; Luo, Y.; Xu, J.; Sun, Y.; Ma, Z.; Chen, S. Effects of oxygen concentrations on developmental competence and transcriptomic profile of yak oocytes. Zygote 2020, 28, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Lin, Y.C. Effect of epidermal growth factor (EGF) and defined simple media on in vitro bovine oocyte maturation and early embryonic development. Theriogenology 1993, 39, 475–484. [Google Scholar] [CrossRef]
- Stefanello, J.R.; Barreta, M.H.; Porciuncula, P.M.; Arruda, J.N.; Oliveira, J.F.; Oliveira, M.A.; Gonçalves, P.B. Effect of angiotensin II with follicle cells and insulin-like growth factor-I or insulin on bovine oocyte maturation and embryo development. Theriogenology 2006, 66, 2068–2076. [Google Scholar] [CrossRef]
- Pomini Pinto, R.F.; Fontes, P.K.; Loureiro, B.; Sousa Castilho, A.C.; Sousa Ticianelli, J.; Montanari Razza, E.; Satrapa, R.A.; Buratini, J.; Moraes Barros, C. Effects of FGF10 on bovine oocyte meiosis progression, apoptosis, embryo development and relative abundance of developmentally important genes in vitro. Reprod. Domest. Anim. 2015, 50, 84–90. [Google Scholar] [CrossRef]
- Mo, X.; Wu, G.; Yuan, D.; Jia, B.; Liu, C.; Zhu, S.; Hou, Y. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Mol. Reprod. Dev. 2014, 81, 608–618. [Google Scholar] [CrossRef]
- Hao, T.; Xu, X.; Hao, H.; Du, W.; Pang, Y.; Zhao, S.; Zou, H.; Yang, S.; Zhu, H.; Yang, Y.; et al. Melatonin improves the maturation and developmental ability of bovine oocytes by up-regulating GJA4 to enhance gap junction intercellular communication. Reprod. Fertil. Dev. 2021, 33, 760–771. [Google Scholar] [CrossRef]
- Dalvit, G.; Llanes, S.P.; Descalzo, A.; Insani, M.; Beconi, M.; Cetica, P. Effect of alpha-tocopherol and ascorbic acid on bovine oocyte in vitro maturation. Reprod. Domest. Anim. 2005, 40, 93–97. [Google Scholar] [CrossRef]
- Gómez, E.; Caamaño, J.N.; Rodríguez, A.; De Frutos, C.; Facal, N.; Díez, C. Bovine early embryonic development and vitamin A. Reprod. Domest. Anim. 2006, 41 (Suppl. S2), 63–71. [Google Scholar] [CrossRef] [PubMed]
- Lodde, V.; Garcia Barros, R.; Dall’Acqua, P.C.; Dieci, C.; Robert, C.; Bastien, A.; Sirard, M.A.; Franciosi, F.; Luciano, A.M. Zinc supports transcription and improves meiotic competence of growing bovine oocytes. Reproduction 2020, 159, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Guixue, Z.; Luciano, A.M.; Coenen, K.; Gandolfi, F.; Sirard, M.A. The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence. Theriogenology 2001, 55, 1733–1743. [Google Scholar] [CrossRef]
- Barretto, L.S.; Caiado Castro, V.S.; Garcia, J.M.; Mingoti, G.Z. Role of roscovitine and IBMX on kinetics of nuclear and cytoplasmic maturation of bovine oocytes in vitro. Anim. Reprod. Sci. 2007, 99, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, C.; Fan, X.; Li, R.; Zhang, J. Effect of C-type natriuretic peptide pretreatment on in vitro bovine oocyte maturation. In Vitro Cell Dev. Biol. Anim. 2017, 53, 199–206. [Google Scholar] [CrossRef]
- De Bie, J.; Marei, W.F.A.; Maillo, V.; Jordaens, L.; Gutierrez-Adan, A.; Bols, P.E.J.; Leroy, J. Differential effects of high and low glucose concentrations during lipolysis-like conditions on bovine in vitro oocyte quality, metabolism and subsequent embryo development. Reprod. Fertil. Dev. 2017, 29, 2284–2300. [Google Scholar] [CrossRef]
- Caixeta, E.S.; Machado, M.F.; Ripamonte, P.; Price, C.; Buratini, J. Effects of FSH on the expression of receptors for oocyte-secreted factors and members of the EGF-like family during in vitro maturation in cattle. Reprod. Fertil. Dev. 2013, 25, 890–899. [Google Scholar] [CrossRef]
- Beker, A.R.; Colenbrander, B.; Bevers, M.M. Effect of 17beta-estradiol on the in vitro maturation of bovine oocytes. Theriogenology 2002, 58, 1663–1673. [Google Scholar] [CrossRef]
- Suttirojpattana, T.; Somfai, T.; Matoba, S.; Nagai, T.; Parnpai, R.; Geshi, M. The effect of temperature during liquid storage of in vitro-matured bovine oocytes on subsequent embryo development. Theriogenology 2016, 85, 509–518.e501. [Google Scholar] [CrossRef]
- Bermejo-Alvarez, P.; Lonergan, P.; Rizos, D.; Gutiérrez-Adan, A. Low oxygen tension during IVM improves bovine oocyte competence and enhances anaerobic glycolysis. Reprod. Biomed. Online 2010, 20, 341–349. [Google Scholar] [CrossRef]
- Garcia-Herreros, M.; Aparicio, I.M.; Rath, D.; Fair, T.; Lonergan, P. Differential glycolytic and glycogenogenic transduction pathways in male and female bovine embryos produced in vitro. Reprod. Fertil. Dev. 2012, 24, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Reinoso, M.A.; Aponte, P.M.; Garcia-Herreros, M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals 2021, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- García-Herreros, M.; Simintiras, C.A.; Lonergan, P. Temporally differential protein expression of glycolytic and glycogenic enzymes during in vitro preimplantation bovine embryo development. Reprod. Fertil. Dev. 2018, 30, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, I.M.; Garcia-Herreros, M.; O’Shea, L.C.; Hensey, C.; Lonergan, P.; Fair, T. Expression, regulation, and function of progesterone receptors in bovine cumulus oocyte complexes during in vitro maturation. Biol. Reprod. 2011, 84, 910–921. [Google Scholar] [CrossRef] [PubMed]
Endogenous Factor | Model | Treatment | Effect | Possible Mechanism | Reference | |
---|---|---|---|---|---|---|
GPR50 | - | Yak oocyte | Knockdown GPR50 | ↓ Maturation and polar body 1 excretion rates | - | [62,63] |
Histone modifications | KDM1A | Yak COCs | Adding GSK-KDM1A, the specific inhibitor of KDM1A | ↓ Cumulus cell expansion, the first polar body excretion rate, and cleavage | ↑ OCT4 ↑ SOX2 | [47,48] |
KDM2 | Yak oocyte | Adding butyrazide, a specific inhibitor of KDM2 | ↓ Oocyte maturation ↑ Cleavage and blastocyst rates | - | [50] | |
SIRT1 | Yak COCs | Adding the specific agonist SRT2104 | ↑ Cumulus cell expansion, cleavage and blastocyst rates ↑ Early embryos’ development ability ↓ Oocyte aging ↓ ROS level | ↑ SIRT1 ↑ FOXO3a ↑ SOD2 ↓ BAX | [53] | |
Adding the inhibitor inauhzin | ↓ Cumulus cell expansion, cleavage and blastocyst rates | - | ||||
miRNA | miR-342-3p | Yak oocyte | MiR-342-3p inhibitor | ↓ Oocyte meiotic maturation | MiR-342-3p inhibitor up-regulated DNMT1 expression | [60] |
Exogenous Factor | Sample | Treatment | Effect | Possible Mechanism | Reference | |
---|---|---|---|---|---|---|
Growth factor | EGF | Yak COCs | Adding 100 ng/mL EGF | ↑ Maturation rate ↑ Cleavage and blastocyst rates | ↓ BAX ↑ BI-1 | [73] |
Yak COCs | Adding 40 μg/mL EGF | ↑ Maturation rate ↑ PA embryos’ development ability | - | [72] | ||
IGF-1 | Yak oocyte | Adding 100 ng/mL IGF-1 | ↑ Maturation rate ↑ Cleavage and blastocyst rates | ↑ CIRP | [76] | |
FGF10 | Yak COCs | Adding 5 ng/mL FGF10 | ↑ Maturation rate ↑ Fertilization ability | ↑ CD9 ↑ CD81 ↑ DNMT1 ↑ DNMT3B | [6] | |
LIF | Yak oocyte | Adding 50 ng/mL LIF | ↑ Maturation rate ↓ ROS generation ↓ Apoptosis levels ↑ Blastocyst total cell numbers ↓ Blastocyst apoptosis rate | ↑ BCL2 ↑ CAPASE3 ↑ SURVIVIN ↑ SOD2 ↑ GPX4 | [84] | |
Antioxidants | Melatonin | Yak COCs | Adding 10−9 M melatonin | ↑ Maturation rate ↑ Cleavage and blastocyst rates ↑ GSH content ↓ ROS levels ↓ Mitochondrial proteins and DNA damage extent ↓ oocyte and blastocyst apoptosis | - | [98,99,100] |
Vitamin C | Yak COCs | Adding 50 μg/mL AA to IVM medium exposed to AFB1 | ↓ ROS level ↓ Early oocyte apoptosis ↑ Mitochondrial distribution status ↑ DNA methylation Restored actin distribution | ↑ DNMT3a ↑ TET3 ↑ NANOG ↑ POU5F1 ↑ CDX2 ↓ DNMT1 | [38,100] | |
Vitamin A | Yak oocyte | Adding 2 μM vitamin A | ↑ Maturation rate ↑ PA embryo cleavage rate | ↑ STRA8 ↑ RARA ↑ RXRA | [93,94] | |
Resveratrol | Yak COCs | - | ↓ ROS levels ↑ GSH content | - | [100] | |
Cysteamine | Yak COCs | - | ↑ GSH content | - | [100] | |
Microelement | Zinc | Yak COCs | Adding 2 mg/L zinc sulfate | ↑ GSH content ↑ SOD activity ↑ Cleavage and blastocyst rates ↓ ROS levels | ↑ ZnT3 ↑ Zrt ↑ ZiP14 ↑ SLC30A3 ↑ SLC30A6 ↑ SCL30A9 ↑ SLC39A6 ↑ SLC39A14 | [103,104] |
Adding 0.8 mg/L Zinc sulfate | - | ↑ SOD1 ↑ CAT ↑ TXN1 ↑ PRD1 ↑ PTX3 ↑ TSG6 | [105] | |||
Calcium | Yak oocyte | Adding 0.24 mM Ca2+ | ↑ Maturation rate ↑ GSH content ↓ ROS levels | ↑ activity of CaMKⅡ ↑ BCL-2 ↑ EGF ↑ EGFR ↑ C-FOS ↓ BAX | [107] | |
Selenium | Yak COCs | Adding 2 μg/mL sodium selenite | ↑ GSH-Px activity ↑ Blastocysts rate | ↑ GPX4 ↑ SEPP1 ↑ RPL22 ↑ CCND1 | [111] | |
Small molecule compounds | Roscovitine | Yak COCs | Pre-IVM yak COCs with 12.5 μM roscovitine for 6 h | ↑ CEI of COCs ↑ Uniform distribution of mitochondria ↑ TZPs ↓ ROS levels | ↑ SOD2 ↑ BCL- ↑ GDF9 ↑ EGFR ↑ ZAR1 e ↓ BAX | [121] |
CNP | Yak oocyte | Pre-IVM yak oocytes with 100 nM CNP for 6 h and IVM for 28 h | ↑ TZPs ↑ GSH content ↓ ROS levels | ↑ NPR2 ↑ BCL-2 ↑ GDF9 ↑ EGF ↑ EGFR ↑ DNMT1 ↓ BAX | [123] | |
Glucose | Yak oocyte | Adding 10 mmol/L glucose | ↑ Maturation rate ↑ Cleavage rate | - | [131] | |
Sucrose | Yak oocyte | Adding 10 mmol/L sucrose | ↑ Nucleus maturation rate | - | [131] | |
Hormone | FSH | Yak oocyte | Adding 5 μg/mL FSH | ↑ Maturation rate ↑ IVF embryos’ development ability ↓ Oocyte apoptosis | ↑ EFG ↑ EGFR ↑ BCL-2 ↓ BAX | [132,133] |
LH | Yak oocyte | Adding 50 IU/mL LH | ↑ IVF embryos’ development ability | - | [132] | |
RFRP-3 | Yak COCs | Adding 10−6 mol/L RFRP-3 | ↑ Oocyte proliferation ↑ Oocyte apoptosis ↓ E2 and P4 concentrations | ↑ CASPASE ↑ BAX ↓ LHR ↓ StAR ↓ 3b-HSD | [143] | |
E2 | Yak COCs | Adding 10−4 mM endogenous 17β-estradiol | ↑ Cumulus expansion ↑ Cleavage and blastocyst rates | ↑ HAS2 ↑ PTGS2 ↑ PTX3 ↑ GDF9 ↑ FGF10 ↑ BMP15 | [140] | |
CYP19A1 | Yak COCs | Adding CYP19A1 inducer (AFB1) | ↑ E2 level ↑ Autophagy level ↑ Maturation rate ↑ Cleavage rate | ↑ CYP19A1 ↑ ATG5 ↑ BECLIN1 ↑ LC3 | [144,145] | |
Adding CYP19A1 inhibitor (BPA) | ↓ E2 level ↓ Autophagy level | ↓ CYP19A1 ↓ ATG5 ↓ BECLIN1 ↓ LC3 | ||||
PAF | - | Yak COCs | Adding 10−7 mol/L PFA | ↑ Maturation rate ↑ Cleavage and blastocyst rates ↓ Apoptosis level | ↑ BCL-2 ↑ EGF ↑ EGFR ↑ C-FOS ↑ OCT-4 ↑ NANOG ↓ BAX | [148,149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, L.; Ma, J.; Xiong, Y.; Xiong, X.; Lan, D.; Li, J.; Yin, S. Factors Influencing the Maturation and Developmental Competence of Yak (Bos grunniens) Oocytes In Vitro. Genes 2023, 14, 1882. https://doi.org/10.3390/genes14101882
Mo L, Ma J, Xiong Y, Xiong X, Lan D, Li J, Yin S. Factors Influencing the Maturation and Developmental Competence of Yak (Bos grunniens) Oocytes In Vitro. Genes. 2023; 14(10):1882. https://doi.org/10.3390/genes14101882
Chicago/Turabian StyleMo, Luoyu, Jun Ma, Yan Xiong, Xianrong Xiong, Daoliang Lan, Jian Li, and Shi Yin. 2023. "Factors Influencing the Maturation and Developmental Competence of Yak (Bos grunniens) Oocytes In Vitro" Genes 14, no. 10: 1882. https://doi.org/10.3390/genes14101882
APA StyleMo, L., Ma, J., Xiong, Y., Xiong, X., Lan, D., Li, J., & Yin, S. (2023). Factors Influencing the Maturation and Developmental Competence of Yak (Bos grunniens) Oocytes In Vitro. Genes, 14(10), 1882. https://doi.org/10.3390/genes14101882