Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Talpa Specimens
2.2. DNA Extraction, Genome Sequencing, Sequence Clustering, and Analysis
2.3. Satellite DNA Probes, Chromosome Preparations, and FISH
3. Results and Discussion
3.1. General Characterization of T. aquitania Satellitome
3.2. Sister Species Genomic Analysis Reveals Insight about satDNAs Diversification on Talpidae
3.3. SatDNAs Chromosome Localization on T. aquitania and T. occidentalis Reveals Information about Karyotypic Evolution
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charlesworth, B.; Sniegowski, P.; Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 1994, 371, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Ramos, M.A. Satellite DNA: An Evolving Topic. Genes 2017, 8, 230. [Google Scholar] [CrossRef] [PubMed]
- López-Flores, I.; Garrido-Ramos, M.A. The repetitive DNA content of eukaryotic genomes. Genome Dyn. 2012, 7, 1–28. [Google Scholar] [PubMed]
- Biscotti, M.A.; Canapa, A.; Forconi, M.; Olmo, E.; Barucca, M. Transcription of tandemly repetitive DNA: Functional roles. Chromosome Res. 2015, 23, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Biscotti, M.A.; Olmo, E.; Heslop-Harrison, J.S. Repetitive DNA in eukaryotic genomes. Chromosome Res. 2015, 23, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.Y.; Kwon, E.C.; Kim, N.S. The C- and G-value paradox with polyploidy, repeatomes, introns, phenomes and cell economy. Genes Genom. 2020, 42, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ruano, F.J.; López-León, M.D.; Cabrero, J.; Camacho, J.P. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016, 6, 28333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugarkovic, D.; Plohl, M. Variation in satellite DNA profiles-causes and effects. EMBO J. 2002, 21, 5955–5959. [Google Scholar] [CrossRef] [Green Version]
- Palomeque, T.; Lorite, P. Satellite DNA in insects: A review. Heredity 2008, 100, 564–573. [Google Scholar] [CrossRef] [Green Version]
- Plohl, M.; Luchetti, A.; Mestrovic, N.; Mantovani, B. Satellite DNAs between selfishness and functionality: Structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 2008, 409, 72–82. [Google Scholar] [CrossRef]
- Mehrotra, S.; Goyal, V. Repetitive sequences in plant nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014, 12, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitri, P.; Corradini, N.; Rossi, F.; Vernì, F. The paradox of functional heterochromatin. Bioessays 2005, 27, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.I.; Elgin, S.C. Transcription and RNA interference in the formation of heterochromatin. Nature 2007, 447, 399–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josse, T.; Teysset, L.; Todeschini, A.-L.; Sidor, C.M.; Anxolabehere, D.; Ronsseray, S. Telomeric trans-silencing: An epigenetic repression combining RNA silencing and heterochromatin formation. PLoS Genet. 2007, 3, 158. [Google Scholar] [CrossRef] [PubMed]
- Ferree, P.M.; Prasad, S. How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. Genet. Res. Int. 2012, 2012, 430136. [Google Scholar] [CrossRef] [Green Version]
- Pezer, Z.; Brajkovic, J.; Feliciello, I.; Ugarkovic, D. Satellite DNA-Mediated Effects on Genome Regulation. Genome Dyn. 2012, 7, 153–169. [Google Scholar] [PubMed]
- Plohl, M.; Mestrovic, N.; Mravinac, B. Centromere identity from the DNA point of view. Chromosoma 2014, 123, 313–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pita, S.; Panzera, F.; Mora, P.; Vela, J.; Cuadrado, A.; Sánchez, A.; Palomeque, T.; Lorite, P. Comparative repeatome analysis on Triatoma infestans Andean and Non-Andean lineages, main vector of Chagas disease. PLoS ONE 2017, 12, e0181635. [Google Scholar] [CrossRef] [Green Version]
- Pita, S.; Mora, P.; Vela, J.; Palomeque, T.; Sánchez, A.; Panzera, F.; Lorite, P. Comparative analysis of repetitive DNA between the main vectors of Chagas disease: Triatoma infestans and Rhodnius prolixus. Int. J. Mol. Sci. 2018, 24, 1277. [Google Scholar] [CrossRef] [Green Version]
- Fingerhut, J.M.; Moran, J.V.; Yamashita, Y.M. Satellite DNA-containing gigantic introns in a unique gene expression program during Drosophila spermatogenesis. PLoS Genet. 2019, 15, e1008028. [Google Scholar] [CrossRef]
- Shatskikh, A.S.; Kotov, A.A.; Adashev, V.E.; Bazylev, S.S.; Olenina, L.V. Functional Significance of Satellite DNAs: Insights from Drosophila. Front. Cell Dev. Biol. 2020, 8, 312. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, M.; Yamashita, Y.M. Defective satellite DNA clustering into chromocenters underlies hybrid incompatibility in Drosophila. Mol. Biol. Evol. 2021, 38, 4977–4986. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Eickbush, D.G.; Speece, I.; Larracuente, A.M. Heterochromatin-dependent transcription of satellite DNAs in the Drosophila melanogaster female germline. eLife 2021, 10, e62375. [Google Scholar] [CrossRef] [PubMed]
- Novák, P.; Neumann, P.; Macas, J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010, 11, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novák, P.; Neumann, P.; Pech, J.; Steinhaisl, J.; Macas, J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 2013, 29, 792–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novák, P.; Ávila Robledillo, L.; Koblížková, A.; Vrbová, I.; Neumann, P.; Macas, J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017, 45, e111. [Google Scholar] [CrossRef]
- Utsunomia, R.; Silva, D.M.Z.A.; Ruiz-Ruano, F.J.; Goes, C.A.G.; Melo, S.; Ramos, L.P.; Oliveira, C.; Porto-Foresti, F.; Foresti, F.; Hashimoto, D.T. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci. Rep. 2019, 9, 5856. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.J.; Fogarin Destro, R.; Gazoni, T.; Narimatsu, H.; Pereira Dos Santos, P.S.; Haddad, C.F.B.; Parise-Maltempi, P.P. Great abundance of satellite DNA in Proceratophrys (Anura, Odontophrynidae) revealed by genome sequencing. Cytogenet. Genome Res. 2020, 160, 141–147. [Google Scholar] [CrossRef]
- Mora, P.; Vela, J.; Ruiz-Ruano, F.J.; Ruiz-Mena, A.; Montiel, E.E.; Palomeque, T.; Lorite, P. Satellitome Analysis in the Ladybird Beetle Hippodamia variegata (Coleoptera, Coccinellidae). Genes 2020, 11, 783. [Google Scholar] [CrossRef]
- Montiel, E.E.; Mora, P.; Rico-Porras, J.M.; Palomeque, T.; Lorite, P. Satellitome of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), the most divers among insects. Front. Ecol. Evol. 2022, 10, 826808. [Google Scholar] [CrossRef]
- Montiel, E.E.; Panzera, F.; Palomeque, T.; Lorite, P.; Pita, S. Satellitome Analysis of Rhodnius prolixus, one of the Main Chagas Disease Vector Species. Int. J. Mol. Sci. 2021, 22, 6052. [Google Scholar] [CrossRef] [PubMed]
- Boštjančić, L.L.; Bonassin, L.; Anušić, L.; Lovrenčić, L.; Besendorfer, V.; Maguire, I.; Grandjean, F.; Austin, C.M.; Greve, C.; Hamadou, A.B.; et al. The Pontastacus leptodactylus (Astacidae) repeatome provides insight into genome evolution and reveals remarkable diversity of satellite DNA. Front. Genet. 2021, 11, 611745. [Google Scholar] [CrossRef] [PubMed]
- Weiss-Schneeweiss, H.; Leitch, A.R.; McCann, J.; Jang, T.S.; Macas, J. Employing next generation sequencing to explore the repeat landscape of the plant genome. In Next Generation Sequencing in Plant Systematics Regnum Vegetabile; Hörandl, E., Appelhans, M., Eds.; Koeltz Scientific Books: Königstein, Germany, 2015; pp. 155–179. [Google Scholar]
- Ruiz-Ruano, F.J.; Navarro-Domínguez, B.; Camacho, J.P.M.; Garrido-Ramos, M.A. Characterization of the satellitome in lower vascular plants: The case of the endangered fern Vandenboschia speciose. Ann. Bot. 2019, 123, 578–599. [Google Scholar] [CrossRef] [PubMed]
- Heitkam, T.; Schulte, L.; Weber, B.; Liedtke, S.; Breitenbach, S.; Kögler, A.; Morgenstern, K.; Brückner, M.; Tröber, U.; Wolf, H.; et al. Comparative Repeat Profiling of Two Closely Related Conifers (Larix decidua and Larix kaempferi) Reveals High Genome Similarity With Only Few Fast-Evolving Satellite DNAs. Front. Genet. 2021, 12, 683668. [Google Scholar] [CrossRef] [PubMed]
- Sader, M.; Vaio, M.; Cauz-Santos, L.A.; Dornelas, M.C.; Vieira, M.L.C.; Melo, N.; Pedrosa-Harand, A. Large vs. small genomes in Passiflora: The influence of the mobilome and the satellitome. Planta 2021, 253, 86. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Aleix-Mata, G.; Lamelas, L.; Arroyo, M.; Marchal, J.A.; Sánchez, A. Karyotype analysis of the new Talpa species Talpa aquitania (Talpidae; Insectivora) from northern Spain. Cytogenet. Genome Res. 2019, 159, 26–31. [Google Scholar] [CrossRef]
- Biltueva, L.; Vorobieva, N. Chromosome evolution in Eulipotyphla. Cytogenet. Genome Res. 2012, 137, 154–164. [Google Scholar] [CrossRef]
- Ye, J.; Biltueva, L.; Huang, L.; Nie, W.; Wang, J.; Jing, M.; Su, W.; Vorobieva, N.V.; Jiang, X.; Graphodatsky, A.S.; et al. Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Res. 2006, 14, 151–159. [Google Scholar] [CrossRef]
- Jimenez, R.; Burgos, M.; Díaz de la Guardia, R. Karyotype and chromosome banding in the mole (Talpa occidentalis) from the south-east of the Iberian Peninsula. Implications on its taxonomic position. Caryologia 1984, 37, 253–258. [Google Scholar] [CrossRef]
- Kawada, S.; Harada, M.; Grafodatsky, A.S.; Oda, S. Cytogenetic study of the Siberian mole, Talpa altaica (Insectivora: Talpidae) and karyological relationships within the genus Talpa. Mammalia 2002, 66, 53–62. [Google Scholar] [CrossRef]
- Gornung, E.; Volleth, M.; Capanna, E.; Castiglia, R. Comparative cytogenetics of moles (Eulipotyphla, Talpidae): Chromosomal differences in Talpa romana and Talpa europaea. Cytogenet. Genome Res. 2008, 121, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.; Aleix-Mata, G.; Marchal, J.A.; Arroyo, M.; Castiglia, R.; Sánchez, A. Molecular Cytogenetic Analysis of Karyotype and Y Chromosome Conservation in Species of the Genus Talpa (Insectivora). Cytogenet. Genome Res. 2020, 160, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Zurita, F.; Sánchez, A.; Burgos, M.; Jiménez, R.; Díaz de la Guardia, R. Interchromosomal, intercellular and interindividual variability of NORs studied with silver staining and in situ hybridization. Heredity 1997, 78, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Real, F.M.; Haas, S.A.; Franchini, P.; Xiong, P.; Simakov, O.; Kuhl, H.; Schöpflin, R.; Heller, D.; Moeinzadeh, M.H.; Heinrich, V.; et al. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science 2020, 370, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Valeri, M.P.; Dias, G.B.; do Espírito Santo, A.A.; Moreira, C.N.; Yonenaga-Yassuda, Y.; Sommer, I.B.; Kuhn, G.C.S.; Svartman, M. First Description of a Satellite DNA in Manatees’ Centromeric Regions. Front. Genet. 2021, 12, 694866. [Google Scholar] [CrossRef]
- Novák, P.; Neumann, P.; Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc. 2020, 15, 3745–3776. [Google Scholar] [CrossRef]
- Storer, J.; Hubley, R.; Rosen, J.; Wheeler, T.J.; Smit, A.F. The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob. DNA 2021, 12, 2. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [Green Version]
- Camacho, J.P.M.; Cabrero, J.; López-León, M.D.; Martín-Peciña, M.; Perfectti, F.; Garrido-Ramos, M.A.; Ruiz-Ruano, F.J. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol. 2022, 20, 36. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. Gplots: Various R Programming Tools for Plotting Data. R Package Version 3.1.1. 2020. Available online: https://CRAN.R-project.org/package=gplots (accessed on 15 June 2022).
- Garnier, S.; Ross, N.; Rudis, R.; Camargo, A.P.; Sciaini, M.; Scherer, C. Rvision—Colorblind-Friendly Color Maps for R. R Package Version 0.6.1. 2021. Available online: https://cran.r-project.org/package=viridisLite (accessed on 15 June 2022).
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Burgos, M.; Jiménez, R.; Díaz de la Guardia, R. A rapid, simple and reliable combined method for G-banding mammalian and human chromosomes. Stain Technol. 1986, 61, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Fernández, R.; Barragán, M.J.; Bullejos, M.; Marchal, J.A.; Martínez, S.; Díaz de la Guardia, R.; Sánchez, A. Molecular and cytogenetic characterization of highly repeated DNA sequences in the vole Microtus cabrerae. Heredity 2001, 87, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Cabral-de-Mello, D.C.; Marec, F. Universal fluorescence in situ hybridization (FISH) protocol for mapping repetitive DNAs in insects and other arthropods. Mol. Genet. Genom. 2021, 296, 513–526. [Google Scholar] [CrossRef]
- Escoda, L.; Castresana, J. The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species. Evol. Appl. 2021, 14, 1898–1913. [Google Scholar] [CrossRef]
- Nicolas, V.; Martínez-Vargas, J.; Hugot, J.P. Preliminary note: Talpa aquitania nov. sp. (Talpidae, Soricomorpha) a new mole species from southwest France and north Spain. Bul. Acad. Vet. Fr. 2015, 168, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, V.; Martínez-Vargas, J.; Hugot, J.P. Molecular data and ecological niche modelling reveal the evolutionary history of the common and Iberian blind moles (Talpidae) in Europe. Zool. Scr. 2017, 46, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Hughes, S.E.; Hawley, R.S. Heterochromatin: A rapidly evolving species barrier. PLoS Biol. 2009, 7, e1000233. [Google Scholar] [CrossRef] [Green Version]
- Peona, V.; Kutschera, V.E.; Blom, M.P.K.; Irestedt, M.; Suh, A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol. Ecol. 2022. [Google Scholar] [CrossRef]
- Fry, K.; Salser, W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 1977, 12, 1069–1084. [Google Scholar] [CrossRef]
- Mestrović, N.; Plohl, M.; Mravinac, B.; Ugarković, D. Evolution of satellite DNAs from the genus Palorus—Experimental evidence for the “library” hypothesis. Mol. Biol. Evol. 1998, 15, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
Name | Genome Proportion | Repeat Unit Length (bp) | A + T Percentage | Kimura Divergence | TSI | DivP | RSP |
---|---|---|---|---|---|---|---|
TaquSat1-183 | 0.55864 | 183 | 67.2 | 12.85 | 0.85 | 10 | 0.36 |
TaquSat2-107 | 0.16776 | 107 | 55.1 | 13.63 | 0.93 | 13 | 0.56 |
TaquSat3-6 | 0.12463 | 6 | 66.7 | 15.61 | 0.76 | 24 | 0.21 |
TaquSat4-437-466 | 0.146 (0.08–0.066) | 437–466 | 30.4–32.6 | 13.3–18.5 | 0.83–0.84 | 12–19 | 0.44–0.42 |
TaquSat5-3102 | 0.04003 | 3102 | 53 | 0.14 | 0.99 | 0 | 1.00 |
TaquSat6-84 | 0.04000 | 84 | 65.5 | 20.63 | 0.53 | 21 | 0.28 |
TaquSat7-60 | 0.00993 | 60 | 48.3 | 16.72 | 0.41 | 17 | 0.28 |
TaquSat8-45 | 0.00532 | 45 | 51.1 | 3.01 | 0.45 | 2 | 0.81 |
TaquSat9-90 | 0.00425 | 90 | 56.7 | 16.28 | 0.40 | 14 | 0.34 |
TaquSat10-24 | 0.00418 | 24 | 50 | 18.16 | 0.48 | 15 | 0.48 |
TaquSat11-71 | 0.00233 | 71 | 40.3 | 2.1 | 0.09 | 1 | 0.98 |
TaquSat12-101 | 0.00180 | 101 | 50.5 | 7.73 | 0.01 | 6 | 0.43 |
TaquSat13-54 | 0.00175 | 54 | 59.3 | 18.7 | 0.20 | 24 | 0.24 |
TaquSat14-17 | 0.00129 | 17 | 35.3 | 21.69 | 0.36 | 18 | 0.33 |
TaquSat15-64 | 0.00045 | 64 | 45.3 | 4.89 | 0.00 | 8 | 0.38 |
Telomeric | 0.13160 | 6 | 50 | 18.29 | 0.91 | 18 | 0.57 |
Total | 1.2422 | ||||||
Mean | 289.24 | 50.43 | 13.07 | 0.53 | 13.06 | 0.48 | |
SD | 737.28 | 11.19 | 6.89 | 0.33 | 7.63 | 0.24 | |
Median | 71.00 | 50.50 | 15.61 | 0.48 | 14.00 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez, J.; Aleix-Mata, G.; Montiel, E.E.; Cabral-de-Mello, D.C.; Marchal, J.A.; Sánchez, A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes 2023, 14, 117. https://doi.org/10.3390/genes14010117
Gutiérrez J, Aleix-Mata G, Montiel EE, Cabral-de-Mello DC, Marchal JA, Sánchez A. Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes. 2023; 14(1):117. https://doi.org/10.3390/genes14010117
Chicago/Turabian StyleGutiérrez, Juana, Gaël Aleix-Mata, Eugenia E. Montiel, Diogo C. Cabral-de-Mello, Juan Alberto Marchal, and Antonio Sánchez. 2023. "Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae" Genes 14, no. 1: 117. https://doi.org/10.3390/genes14010117
APA StyleGutiérrez, J., Aleix-Mata, G., Montiel, E. E., Cabral-de-Mello, D. C., Marchal, J. A., & Sánchez, A. (2023). Satellitome Analysis on Talpa aquitania Genome and Inferences about the satDNAs Evolution on Some Talpidae. Genes, 14(1), 117. https://doi.org/10.3390/genes14010117