Phenotypic and Genetic Characteristics in a Cohort of Patients with Usher Genes
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinical Phenotype
2.2. Genetic Analysis
2.3. Statistical Analysis
3. Results
3.1. Patients with USH2A Associated Disease
3.2. Phenotype Correlations
3.3. Genotype-Phenotype Correlations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanco-Kelly, F.; Jaijo, T.; Aller, E.; Avila-Fernandez, A.; Lopez-Molina, M.I.; Gimenez, A.; Garcia-Sandoval, B.; Millan, J.M.; Ayuso, C. Clinical aspects of Usher syndrome and the USH2A gene in a cohort of 433 patients. JAMA Ophthalmol. 2015, 133, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Sengillo, J.D.; Cabral, T.; Schuerch, K.; Duong, J.; Lee, W.; Boudreault, K.; Xu, Y.; Justus, S.; Sparrow, J.R.; Mahajan, V.B.; et al. Electroretinography Reveals Difference in Cone Function between Syndromic and Nonsyndromic USH2A Patients. Sci. Rep. 2017, 7, 11170. [Google Scholar] [CrossRef] [PubMed]
- Pierrache, L.H.; Hartel, B.P.; van Wijk, E.; Meester-Smoor, M.A.; Cremers, F.P.; de Baere, E.; de Zaeytijd, J.; van Schooneveld, M.J.; Cremers, C.W.; Dagnelie, G.; et al. Visual Prognosis in USH2A-Associated Retinitis Pigmentosa Is Worse for Patients with Usher Syndrome Type IIa Than for Those with Nonsyndromic Retinitis Pigmentosa. Ophthalmology 2016, 123, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- GeneReviews®. Usher Syndrome Type I. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1265/ (accessed on 10 June 2022).
- Toualbi, L.; Toms, M.; Moosajee, M. USH2A-retinopathy: From genetics to therapeutics. Exp. Eye Res. 2020, 201, 108330. [Google Scholar] [CrossRef]
- Dad, S.; Rendtorff, N.D.; Tranebjaerg, L.; Gronskov, K.; Karstensen, H.G.; Brox, V.; Nilssen, O.; Roux, A.F.; Rosenberg, T.; Jensen, H.; et al. Usher syndrome in Denmark: Mutation spectrum and some clinical observations. Mol. Genet. Genom. Med. 2016, 4, 527–539. [Google Scholar] [CrossRef]
- Ebermann, I.; Phillips, J.B.; Liebau, M.C.; Koenekoop, R.K.; Schermer, B.; Lopez, I.; Schafer, E.; Roux, A.F.; Dafinger, C.; Bernd, A.; et al. PDZD7 is a modifier of retinal disease and a contributor to digenic Usher syndrome. J. Clin. Investig. 2010, 120, 1812–1823. [Google Scholar] [CrossRef]
- Khateb, S.; Zelinger, L.; Mizrahi-Meissonnier, L.; Ayuso, C.; Koenekoop, R.K.; Laxer, U.; Gross, M.; Banin, E.; Sharon, D. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J. Med. Genet. 2014, 51, 460–469. [Google Scholar] [CrossRef]
- Lenassi, E.; Vincent, A.; Li, Z.; Saihan, Z.; Coffey, A.J.; Steele-Stallard, H.B.; Moore, A.T.; Steel, K.P.; Luxon, L.M.; Heon, E.; et al. A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants. Eur. J. Hum. Genet. 2015, 23, 1318–1327. [Google Scholar] [CrossRef]
- McGee, T.L.; Seyedahmadi, B.J.; Sweeney, M.O.; Dryja, T.P.; Berson, E.L. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J. Med. Genet. 2010, 47, 499–506. [Google Scholar] [CrossRef]
- Rivolta, C.; Sweklo, E.A.; Berson, E.L.; Dryja, T.P. Missense mutation in the USH2A gene: Association with recessive retinitis pigmentosa without hearing loss. Am. J. Hum. Genet. 2000, 66, 1975–1978. [Google Scholar] [CrossRef]
- Hufnagel, R.B.; Liang, W.; Duncan, J.L.; Brewer, C.C.; Audo, I.; Ayala, A.R.; Branham, K.; Cheetham, J.K.; Daiger, S.P.; Durham, T.A.; et al. Tissue-specific genotype–phenotype correlations among USH2A-related disorders in the RUSH2A study. Hum. Mutat. 2022, 43, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Bernal, S.; Ayuso, C.; Antiñolo, G.; Gimenez, A.; Borrego, S.; Trujillo, M.J.; Marcos, I.; Calaf, M.; Del Rio, E.; Baiget, M. Mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa: High prevalence and phenotypic variation. J. Med. Genet. 2003, 40, e8. [Google Scholar] [CrossRef] [PubMed]
- Hartel, B.P.; Löfgren, M.; Huygen, P.L.; Guchelaar, I.; Lo, A.N.K.N.; Sadeghi, A.M.; van Wijk, E.; Tranebjærg, L.; Kremer, H.; Kimberling, W.J.; et al. A combination of two truncating mutations in USH2A causes more severe and progressive hearing impairment in Usher syndrome type IIa. Hear. Res. 2016, 339, 60–68. [Google Scholar] [CrossRef]
- Inaba, A.; Maeda, A.; Yoshida, A.; Kawai, K.; Hirami, Y.; Kurimoto, Y.; Kosugi, S.; Takahashi, M. Truncating Variants Contribute to Hearing Loss and Severe Retinopathy in USH2A-Associated Retinitis Pigmentosa in Japanese Patients. Int. J. Mol. Sci. 2020, 21, 7817. [Google Scholar] [CrossRef] [PubMed]
- Duncan, J.L.; Liang, W.; Maguire, M.G.; Audo, I.; Ayala, A.R.; Birch, D.G.; Carroll, J.; Cheetham, J.K.; Esposti, S.D.; Durham, T.A.; et al. Baseline Visual Field Findings in the RUSH2A Study: Associated Factors and Correlation With Other Measures of Disease Severity. Am. J. Ophthalmol. 2020, 219, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Holladay, J.T. Proper method for calculating average visual acuity. J. Refract. Surg. 1997, 13, 388–391. [Google Scholar] [CrossRef]
- McCulloch, D.L.; Marmor, M.F.; Brigell, M.G.; Hamilton, R.; Holder, G.E.; Tzekov, R.; Bach, M. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015, 130, 1–12. [Google Scholar] [CrossRef]
- Fakin, A.; Jarc-Vidmar, M.; Glavac, D.; Bonnet, C.; Petit, C.; Hawlina, M. Fundus autofluorescence and optical coherence tomography in relation to visual function in Usher syndrome type 1 and 2. Vision Res. 2012, 75, 60–70. [Google Scholar] [CrossRef]
- Testa, F.; Melillo, P.; Rossi, S.; Marcelli, V.; de Benedictis, A.; Colucci, R.; Gallo, B.; Brunetti-Pierri, R.; Donati, S.; Azzolini, C.; et al. Prevalence of macular abnormalities assessed by optical coherence tomography in patients with Usher syndrome. Ophthalmic Genet. 2017, 39, 1–5. [Google Scholar] [CrossRef]
- Dhoot, D.S.; Huo, S.; Yuan, A.; Xu, D.; Srivistava, S.; Ehlers, J.P.; Traboulsi, E.; Kaiser, P.K. Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. Br. J. Ophthalmol. 2013, 97, 66–69. [Google Scholar] [CrossRef]
- Sumaroka, A.; Matsui, R.; Cideciyan, A.V.; McGuigan, D.B., 3rd; Sheplock, R.; Schwartz, S.B.; Jacobson, S.G. Outer Retinal Changes Including the Ellipsoid Zone Band in Usher Syndrome 1B due to MYO7A Mutations. Investig. Ophthalmol. Vis. Sci. 2016, 57, OCT253-261. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shah, M.; Shanks, M.; Packham, E.; Williams, J.; Haysmoore, J.; MacLaren, R.E.; Németh, A.H.; Clouston, P.; Downes, S.M. Next generation sequencing using phenotype-based panels for genetic testing in inherited retinal diseases. Ophthalmic Genet. 2020, 41, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Rimmer, A.; Phan, H.; Mathieson, I.; Iqbal, Z.; Twigg, S.R.F.; Consortium, W.G.S.; Wilkie, A.O.M.; McVean, G.; Lunter, G. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 2014, 46, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Schouten, J.P.; McElgunn, C.J.; Waaijer, R.; Zwijnenburg, D.; Diepvens, F.; Pals, G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002, 30, e57. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Fujinami, K.; Strauss, R.W.; Chiang, J.P.; Audo, I.S.; Bernstein, P.S.; Birch, D.G.; Bomotti, S.M.; Cideciyan, A.V.; Ervin, A.M.; Marino, M.J.; et al. Detailed genetic characteristics of an international large cohort of patients with Stargardt disease: ProgStar study report 8. Br. J. Ophthalmol. 2019, 103, 390–397. [Google Scholar] [CrossRef]
- Testa, F.; Melillo, P.; Bonnet, C.; Marcelli, V.; de Benedictis, A.; Colucci, R.; Gallo, B.; Kurtenbach, A.; Rossi, S.; Marciano, E.; et al. Clinical Presentation and Disease Course of Usher Syndrome Because of Mutations in Myo7a or Ush2a. Retina 2017, 37, 1581–1590. [Google Scholar] [CrossRef]
- Colombo, L.; Maltese, P.E.; Romano, D.; Fogagnolo, P.; Castori, M.; Marceddu, G.; Cristofoli, F.; Percio, M.; Piteková, B.; Modarelli, A.M.; et al. Spectral-Domain Optical Coherence Tomography Analysis in Syndromic and Nonsyndromic Forms of Retinitis Pigmentosa due to USH2A Genetic Variants. Ophthalmic Res. 2022, 65, 180–195. [Google Scholar] [CrossRef]
- Colombo, L.; Sala, B.; Montesano, G.; Pierrottet, C.; De Cilla, S.; Maltese, P.; Bertelli, M.; Rossetti, L. Choroidal Thickness Analysis in Patients with Usher Syndrome Type 2 Using EDI OCT. J. Ophthalmol 2015, 2015, 189140. [Google Scholar] [CrossRef]
- Lee, S.Y.; Joo, K.; Oh, J.; Han, J.H.; Park, H.R.; Lee, S.; Oh, D.Y.; Woo, S.J.; Choi, B.Y. Severe or Profound Sensorineural Hearing Loss Caused by Novel USH2A Variants in Korea: Potential Genotype-Phenotype Correlation. Clin. Exp. Otorhinolaryngol. 2020, 13, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Molina-Ramírez, L.P.; Lenassi, E.; Ellingford, J.M.; Sergouniotis, P.I.; Ramsden, S.C.; Bruce, I.A.; Black, G.C.M. Establishing Genotype-phenotype Correlation in USH2A-related Disorders to Personalize Audiological Surveillance and Rehabilitation. Otol. Neurotol. 2020, 41, 431–437. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Report on Hearing. 2021. Available online: https://www.who.int/publications/i/item/world-report-on-hearing (accessed on 4 July 2022).
USH | Non-Syndromic RP | p Value | |||
---|---|---|---|---|---|
Mean | n | Mean | n | ||
Age at first ocular symptoms (yrs) | 17.9 (SD 12.2) | 26 | 31.7 (SD 16.5) | 32 | <0.001 |
Age at assessment (yrs) | 39.4 (SD 11.8) | 29 | 48.7 (SD 15.6) | 33 | 0.011 |
LogMAR visual acuity * | 0.35 (SD 0.29) | 27 | 0.32 (SD 0.39) | 31 | 0.702 |
FAF pattern * | n = 22 | n = 25 | |||
Hyperautofluorescent ring | 12 (54.6%) | 18 (72.0%) | 0.040 | ||
Hyperautofluorescent foveal patch | 9 (40.9%) | 3 (12.0%) | |||
Foveal atrophy | 0 | 2 (8.0%) | |||
OCT findings | |||||
CMO | 8 (38.1%) | 21 | 1 (4.8%) | 21 | 0.021 |
Central retinal thickness (µm) * | 274.5 (SD 113.2) | 21 | 237.4 (SD 54.3) | 21 | 0.183 |
Genotype A | Genotype B | Genotype C | p Value | ||||
---|---|---|---|---|---|---|---|
Mean | n | Mean | n | Mean | n | ||
Syndromic USH2A | 16 | 10 | 1 | <0.001 | |||
NS-ARRP | 1 | 16 | 17 | ||||
Age at first ocular symptoms (yrs) | 15.5 (SD 5.4) | 12 | 25.1 (SD 16.1) | 26 | 35.2 (SD 15.2) | 16 | 0.004 |
Age at assessment (yrs) | 39.3 (SD 13.7) | 17 | 42.9 (SD 13.4) | 26 | 52.4 (SD 12.9) | 18 | 0.016 |
LogMAR * visual acuity | 0.40 (SD 0.31) | 16 | 0.34 (SD 0.38) | 25 | 0.27 (SD 0.30) | 16 | 0.609 |
FAF pattern * | n = 15 | n =17 | n = 15 | ||||
Hyperautofluorescent ring | 8 (53.3%) | 14 (82.4%) | 10 (66.7%) | 0.411 | |||
Hyperautofluorescent foveal patch | 6 (40%) | 3 (17.7%) | 4 (26.7%) | ||||
Foveal atrophy | 1 (6.7%) | 0 | 1 (6.7%) | ||||
OCT findings | |||||||
CMO | 4 (33.3%) | 12 | 4 (21.1%) | 19 | 0 | 13 | 0.078 |
Central retinal thickness (µm) * | 283.8 (SD 130.1) | 13 | 247.2 (SD 60.8) | 18 | 232.0 (SD 40.9) | 13 | 0.299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feenstra, H.M.; Al-Khuzaei, S.; Shah, M.; Broadgate, S.; Shanks, M.; Kamath, A.; Yu, J.; Jolly, J.K.; MacLaren, R.E.; Clouston, P.; et al. Phenotypic and Genetic Characteristics in a Cohort of Patients with Usher Genes. Genes 2022, 13, 1423. https://doi.org/10.3390/genes13081423
Feenstra HM, Al-Khuzaei S, Shah M, Broadgate S, Shanks M, Kamath A, Yu J, Jolly JK, MacLaren RE, Clouston P, et al. Phenotypic and Genetic Characteristics in a Cohort of Patients with Usher Genes. Genes. 2022; 13(8):1423. https://doi.org/10.3390/genes13081423
Chicago/Turabian StyleFeenstra, Helena M., Saoud Al-Khuzaei, Mital Shah, Suzanne Broadgate, Morag Shanks, Archith Kamath, Jing Yu, Jasleen K. Jolly, Robert E. MacLaren, Penny Clouston, and et al. 2022. "Phenotypic and Genetic Characteristics in a Cohort of Patients with Usher Genes" Genes 13, no. 8: 1423. https://doi.org/10.3390/genes13081423
APA StyleFeenstra, H. M., Al-Khuzaei, S., Shah, M., Broadgate, S., Shanks, M., Kamath, A., Yu, J., Jolly, J. K., MacLaren, R. E., Clouston, P., Halford, S., & Downes, S. M. (2022). Phenotypic and Genetic Characteristics in a Cohort of Patients with Usher Genes. Genes, 13(8), 1423. https://doi.org/10.3390/genes13081423