Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension
Abstract
:1. Introduction
2. Methods
2.1. Ethical Approval
2.2. Patient Selection and Data Collection
2.3. Laboratory Assessments
2.4. DNA Isolation
2.5. Selection of Pharmacogenomics Biomarkers
2.6. Genotyping
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Participants
3.2. Descriptive Patterns of Single Nucleotide Polymorphisms Associated with Amlodipine
3.3. Association between SNPs and Blood Pressure Control with Amlodipine
4. Discussion
Strength and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jongen, V.W.; Lalla-Edward, S.T.; Vos, A.G.; Godijk, N.G.; Tempelman, H.; Grobbee, D.E.; Devillé, W.; Klipstein-Grobusch, K. Hypertension in a rural community in South Africa: What they know, what they think they know and what they recommend. BMC Public Health 2019, 19, 341. [Google Scholar] [CrossRef]
- National Department of Health (NDoH); Statistics South Africa (Stats SA); South African Medical Research Council (SAMRC); ICF. South Africa Demographic and Health Survey 2016; NDoH, Stats SA, SAMRC, and ICF: Pretoria, South Africa, 2019. [Google Scholar]
- Monakali, S.; Ter Goon, D.; Seekoe, E.; Owolabi, E.O. Prevalence, awareness, control and determinants of hypertension among primary health care professional nurses in Eastern Cape, South Africa. Afr. J. Prim. Health Care Fam. Med. 2018, 10, e1–e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mkhonto, S.S.; Labadarios, D.; Mabaso, M.L. Association of body weight and physical activity with blood pressure in a rural population in the Dikgale village of Limpopo Province in South Africa. BMC Res. Notes 2012, 5, 118. [Google Scholar] [CrossRef] [Green Version]
- Prakaschandra, D.R.; Esterhuizen, T.M.; Motala, A.A.; Gathiram, P.; Naidoo, D.P. High prevalence of cardiovascular risk factors in Durban South African Indians: The Phoenix Lifestyle Project. S. Afr. Med. J. 2016, 106, 284–289. [Google Scholar] [CrossRef]
- Adeniyi, O.V.; Yogeswaran, P.; Longo-Mbenza, B.; Ter Goon, D. Uncontrolled Hypertension and Its Determinants in Patients with Concomitant Type 2 Diabetes Mellitus (T2DM) in Rural South Africa. PLoS ONE 2016, 11, e0150033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masilela, C.; Pearce, B.; Ongole, J.J.; Adeniyi, O.V.; Benjeddou, M. Cross-sectional study of prevalence and determinants of uncon-trolled hypertension among South African adult residents of Mkhondo municipality. BMC Public Health 2020, 20, 1069. [Google Scholar] [CrossRef] [PubMed]
- Adebolu, F.A.; Naidoo, M. Blood pressure control amongst patients living with hypertension presenting to an urban district hospital outpatient clinic in Kwazulu-Natal. Afr. J. Prim. Health Care Fam. Med. 2014, 6, 1–6. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, N.; Posadas-Romero, C.; Villarreal-Molina, T.; Vallejo, M.; Del-Valle-Mondragón, L.; Ramírez-Bello, J.; Valladares, A.; Cruz-López, M.; Vargas-Alarcón, G. Single Nucleotide Polymorphisms of the Angiotensin-Converting Enzyme (ACE) Gene Are Associated with Essential Hypertension and Increased ACE Enzyme Levels in Mexican Individuals. PLoS ONE 2013, 8, e65700. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, C.P.; Ng, F.L.; Warren, H.R.; Barnes, M.R.; Munroe, P.B.; Caulfield, M.J. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics: Exploring hypertension GWAS findings. Wiley Interdiscip. Rev. Syst. Biol. Med. 2015, 7, 73–90. [Google Scholar] [CrossRef]
- Khalil, H.; Zeltser, R. Antihypertensive Medications. InStatPearls [Internet]. StatPearls Publishing. Available online: http://www.ncbi.nlm.nih.gov/books/NBK519508/ (accessed on 28 February 2020).
- Fares, H.; Di Nicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Amlodipine in hypertension: A first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart 2016, 3, e000473. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Dludla, P.; Mabhida, S.; Benjeddou, M.; Louw, J.; February, F. Pharmacogenomics of amlodipine and hydrochloro-thiazide therapy and the quest for improved control of hypertension: A mini review. Heart Fail. Rev. 2019, 24, 343–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beitelshees, A.L.; Navare, H.; Wang, D.; Gong, Y.; Wessel, J.; Moss, J.I.; Langaee, T.Y.; Cooper-DeHoff, R.M.; Sadee, W.; Pepine, C.J.; et al. CACNA1C gene polymorphisms, cardiovascular disease outcomes, and treatment response. Circ. Cardiovasc. Genet. 2009, 2, 362–370. [Google Scholar] [CrossRef] [Green Version]
- Bremer, T.; Man, A.; Kask, K.; Diamond, C. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics 2006, 7, 271–279. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Liu, X.; Li, J. Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia. BMC Neurol. 2019, 19, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, V.; Garcia, E.P.; O’Connor, D.T.; Brophy, V.H.; Alcaraz, J.; Richard, E.; Bakris, G.L.; Middleton, J.P.; Norris, K.C.; Wright, J.; et al. CYP3A4 and CYP3A5 Polymorphisms and Blood Pressure Response to Amlodipine among African-American Men and Women with Early Hypertensive Renal Disease. Am. J. Nephrol. 2010, 31, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lü, Y.; Zhong, H.; Tang, Q.; Huang, Z.; Jing, N.; Smith, J.; Miao, R.; Li, Y.; Yuan, H. Construction and verification of CYP3A5 gene polymorphisms using a Saccharomyces cerevisiae expression system to predict drug metabolism. Mol. Med. Rep. 2017, 15, 1593–1600. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Sekar, D.; Karunanithy, S.; Subramanium, S. Association of angiotensin converting enzyme gene inser-tion/deletion polymorphism with essential hypertension in south Indian population. Genes Dis. 2016, 3, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Do, A.N.; Irvin, M.R.; Lynch, A.I.; Claas, S.A.; Boerwinkle, E.; Davis, B.R.; Ford, C.E.; Eckfeldt, J.H.; Tiwari, H.K.; Limdi, N.A.; et al. The effects of angiotensinogen gene polymorphisms on cardiovascular disease outcomes during antihypertensive treatment in the GenHAT study. Front. Pharmacol. 2014, 5, 210. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, S.M.; Nicaud, V.; Tiret, L.; Evans, A.; Kee, F.; Ruidavets, J.B.; Arveiler, D.; Luc, G.; Morrison, C.; Hoehe, M.R.; et al. Polymorphisms of the β2-adrenoceptor (ADRB2) gene and essential hypertension: The ECTIM and PEGASE studies. J. Hypertens. 2002, 20, 229–235. [Google Scholar] [CrossRef]
- Becker, M.L.; Visser, L.E.; Newton-Cheh, C.; Hofman, A.; Uitterlinden, A.G.; Witteman, J.C.; Stricker, B.H. A common NOS1AP genetic polymorphism is associated with increased cardiovascular mortality in users of dihydropyridine calcium channel blockers. Br. J. Clin. Pharmacol. 2009, 67, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Kulminski, A.M.; Culminskaya, I.V.; Ukraintseva, S.V.; Arbeev, K.G.; Akushevich, I.; Land, K.C.; Yashin, A.I. Polymorphisms in the ACE and ADRB2 genes and risks of aging-associated phenotypes: The case of myocardial infarction. Rejuvenation Res. 2010, 13, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, S.; Paul, L.; Dominczak, A.F. The Pharmacogenomics of Anti-Hypertensive Therapy. Pharmaceuticals 2010, 3, 1779–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, D. 2017 SEMDSA diabetes management guidelines. S. Afr. J. Diabetes Vasc. Dis. 2018, 15, 37–40. [Google Scholar]
- Lahiri, D.K.; Nurnberger, J.I., Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef]
- Pharm, G.K.B. Stanford University. Website. 2020. Available online: https://www.pharmgkb.org (accessed on 13 December 2021).
- Ensembl Genome Browser 100 [Internet]. Available online: https://www.ensembl.org/index.html (accessed on 7 June 2020).
- Tucci, S.; Akey, J.M. The long walk to African genomics. Genome Biol. 2019, 20, 130. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Liu, J.; Li, Y.; Liu, Y.; Wang, Z.; Liu, K.; Wu, H.; Niu, Q.; Gu, W.; Guo, Y.; et al. Association study of the β2-adrenergic receptor gene polymorphisms and hypertension in the Northern Han Chinese. PLoS ONE 2011, 6, e18590. [Google Scholar] [CrossRef] [PubMed]
- Anthony, E.G.; Richard, E.; Lipkowitz, M.S.; Bhatnagar, V. Association of the ADRB2 (rs2053044) polymorphism and angioten-sin-converting enzyme-inhibitor blood pressure response in the African American Study of Kidney Disease and Hyperten-sion. Pharm. Genom. 2015, 25, 444–449. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, G.; Lu, Y.; Wen, J.; Ji, Y.; Xing, X.; Li, Y.; Wen, J.; Yuan, H. CYP3A4*1G and CYP3A5*3 genetic polymorphisms alter the antihypertensive efficacy of amlodipine in patients with hypertension following renal transplantation. Int. J. Clin. Pharmacol. Ther. 2017, 55, 109–118. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, D.; He, H.; Li, T.; Chen, X.; Ji, H. Effects of CYP3A5, MDR1 and CACNA1C polymorphisms on the oral disposition and response of nimodipine in a Chinese cohort. Eur. J. Clin. Pharmacol. 2009, 65, 579–584. [Google Scholar] [CrossRef]
- Kamide, K.; Yang, J.; Matayoshi, T.; Takiuchi, S.; Horio, T.; Yoshii, M.; Miwa, Y.; Yasuda, H.; Yoshihara, F.; Nakamura, S.; et al. Genetic polymorphisms of L-type calcium channel α1C and α1D subunit genes are associated with sensitivity to the antihypertensive effects of L-type dihydropyridine calcium-channel blockers. Circ. J. 2009, 73, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ortega, M.; Lorenzo, O.; Ruperez, M.; Esteban, V.; Suzuki, Y.; Mezzano, S.; Plaza, J.J.; Egido, J. Role of the renin-angiotensin system in vascular diseases: Expanding the field. Hypertension 2001, 38, 1382–1387. [Google Scholar] [CrossRef] [Green Version]
- Seedat, Y.; Rayner, B.; Veriava, Y. South African hypertension practice guideline 2014. Cardiovasc. J. Afr. 2014, 25, 288–294. [Google Scholar] [CrossRef] [Green Version]
SNP | GENE | Level of Evidence | Reference |
---|---|---|---|
rs1045642 | ABCB1 | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs10494366 | NOS1AP | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs11122576 | AGT | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs12143842 | AGT | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs1799752 | ACE | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs2246709 | CYP3A4 | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs2740574 | CYP3A4 | 3 | www.pharmgkb.org (accessed on 28 February 2020 ). |
rs4291 | ACE | 3 | www.pharmgkb.org (accessed on28 February 2020 ). |
rs2032582 | ABCB1 | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs1042713 | ADBR2 | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs10494366 | NOS1AP | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs2239050 | CACNA1C | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
rs2238032 | CACNA1C | 3 | www.pharmgkb.org (accessed on 28 February 2020). |
Variables | All Participants (n; %) | Males (n; %) | Females (n; %) |
---|---|---|---|
All | 304 (100%) | 71 (23.3%) | 233 (76.6) |
Age (Years) | |||
18–25 | 1 (0.3) | - | 1 (0.4) |
26–35 | 9 (3,0) | 5 (7,0) | 4 (1.7) |
36–45 | 23 (7.6) | 3 (4.2) | 20 (8.6) |
46–55 | 65 (21.4) | 16 (22.5) | 49 (21.0) |
56–65 | 97 (31.9) | 24 (33.8) | 73 (31.3) |
≥66 | 109 (35.9) | 23 (32.4) | 86 (36.9) |
Ethnicity | |||
Zulu | 139 (45.7) | 25 (35.1) | 114 (48.9) |
Swati | 43 (14.1) | 6 (8.5) | 37 (15.9) |
Xhosa | 122 (40.1) | 40 (56.3) | 82 (35.2) |
Smoking status | |||
Never Smoked | 259 (85.2) | 42 (59.2) | 217 (93.1) |
Ever Smoked | 45 (14.8) | 29 (40.2) | 16 (6.9) |
Salt intake | |||
Low-Moderate | 237 (78.0) | 52 (73.2) | 185 (79.4) |
Increased | 67 (22.0) | 19 (26.8) | 48 (20.6) |
Blood Pressure | |||
<140/90 mmHg | 145 (47.7) | 25 (35.2) | 120 (51.5) |
≥140/90 mmHg | 159 (52.3) | 46 (64.8) | 113 (48.5) |
Drug Regime | |||
Amlodipine Alone | 13 (4.3) | 4 (5.6) | 9 (3.9) |
Amlodipine + 1 Drug | 113 (37.2) | 25 (35.2) | 88 (37.8) |
Amlodipine + 2 Drugs | 152 (50.0) | 36 (50.7) | 116 (49.8) |
Amlodipine + 3 Drugs | 26 (8.65) | 6 (8.5) | 20 (8.6) |
SNP | Gene | Ethnic Groups | Gender | Age | |||||
---|---|---|---|---|---|---|---|---|---|
Zulu (n; %) | Swati (n; %) | Xhosa (n; %) | Male (n; %) | Female (n; %) | <55 Years | 55–65 Years | >65 Years | ||
All | 139 (45.7) | 43 (14.1%) | 122 (40.1%) | 40 (32.8%) | 82 (67.2%) | 24 (19.7%) | 55 (45.1%) | 43 (35.2%) | |
rs1042713 | ADBR2 | ||||||||
Yes | - | - | 97 (79.5) | 34 (85.0) | 63 (76.8) | 19 (79.2) | 43 (78.2) | 35 (81.4) | |
No | 139 (100) | 43 (100) | 25 (20.5) | 6 (15.0) | 19 (23.2) | 5(20.8) | 12 (21.8) | 8 (18.6) | |
rs10494366 | NOS1AP | ||||||||
Yes | - | - | 119 (97.5) | 39 (97.5) | 80 (97.6) | 23 (95.8) | 54 (98.2) | 42 (97.7) | |
No | 139 (100) | 43 (100) | 3 (2.5) | 1 (2.5) | 2 (2.4) | 1 (4.2) | 1 (1.2) | 1 (2.3) | |
rs2239050 | CACNA1C | ||||||||
Yes | - | - | 122 (100) | 40 (100) | 82 (100) | 24 (100) | 55 (100) | 43 (100) | |
No | 139 (100) | 43 (100) | - | - | - | - | - | - | |
rs2246709 | CYP3A4 | ||||||||
Yes | - | - | 122 (100) | 40 (100) | 82 (100) | 24 (100) | 55 (100) | 43 (100) | |
No | 139 (100) | 43 (100) | - | - | - | - | - | - | |
rs4291 | ACE | ||||||||
Yes | - | - | 122 (100) | 40 (100) | 82 (100) | 24 (100) | 55 (100) | 43 (100) | |
No | 139 (100) | 43 (100) | - | - | - |
SNP | Nucleotide Substitution | Feature | Minor Allele Frequency (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Xhosa | Yoruba | Luhya | African American | Mexican | British | South Asian | |||
rs1042713 | G > A | Missense | 45.9 | 88.0 | 78.8 | 87.7 | 85.9 | 60.4 | 80.7 |
rs10494366 | G > T | Intron | 35.3 | 88.0 | 86.4 | 77.9 | 57.8 | 50.0 | 60.3 |
rs2239050 | C > G | Intron | 28.7 | 87.5 | 85.9 | 83.6 | 72.7 | 53.8 | 74.5 |
rs2246709 | A > G | Intron | 51.6 | 13.4 | 12.6 | 14.8 | 14.9 | 20.3 | 14.0 |
rs4291 | T > A | Regulatory | 34.4 | 22.7 | 23.2 | 39.3 | 41.4 | 44.0 | 38.4 |
SNP | Controlled Hypertension (n; %) | Uncontrolled Hypertension (n; %) | Unadjusted Odds Ratios (95% CI) | p-Value | Adjusted Odds Ratios (95% CI) | p-Value | Bonferroni Adjusted p-Value |
---|---|---|---|---|---|---|---|
All | 20 (16.4%) | 102 (83.6%) | |||||
rs1042713 | |||||||
Genotypes | |||||||
GG | 4 (15.4) | 22 (84.6) | 1 | 1 | |||
GA | 10 (15.2) | 56 (84.8) | 1.29 (0.32–5.21) | 0.718 | 0.68 (0.19–2.43) | 0.559 | |
AA | 6 (20.0) | 24 (80.0) | 1.05 (0.15–7.26 | 0.809 | 0.76 (0.13–4.38) | 0.768 | |
Alleles | |||||||
G | 18 (15.3) | 100 (84.7) | 1 | 1 | |||
A | 22 (17.5) | 104 (82.5) | 1.04 (0.47–2.26) | 0.928 | 1.12 (0.47–2.63) | 0.787 | |
rs10494366 | |||||||
Genotypes | |||||||
TT | 13 (18.1) | 59 (81.9) | 1 | 1 | |||
GT | 3 (13.0) | 20 (87.0) | 0.77 (0.22–2.62) | 0.958 | 0.59 (0.12–2.91) | 0.520 | |
GG | 4 (14.8) | 23 (85.2) | 0.74 (0.190–2.90) | 0.669 | 0.56 (0.13–2.29) | 0.426 | |
Alleles | |||||||
T | 29 (17.4) | 138 (82.6) | 1 | 1 | |||
G | 11 (14.3) | 66 (85.7) | 0.53 (0.25–1.16) | 0.113 | 0.58 (0.25–1.34) | 0.208 | |
rs2239050 | |||||||
Genotypes | |||||||
CC | 11 (19.0) | 47 (81.0) | 1 | 1 | |||
CG | 5 (8.8) | 52 (91.2) | 0.41 (0.132–1.54) | 0.122 | 0.36 (0.10–1.26) | 0.111 | |
GG | 4 (57.1) | 3 (42.9) | 5.69 (1.11–29.21) | 0.003 | 2.49 (0.51–12.13) | 0.257 | 0.128 |
Alleles | |||||||
C | 27 (15.6) | 146 (84.4) | 1 | 1 | |||
G | 13 (18.3) | 58 (81.7) | 1.07 (0.51–2.26) | 0.841 | 0.76 (0.29–1.99) | 0.583 | |
rs2246709 | |||||||
Genotypes | |||||||
GG | 3 (27.3) | 8 (72.7) | 1 | 1 | |||
AG | 8 (16.7) | 40 (83.3) | 0.37 (0.07–1.86) | 0.183 | 0.44 (0.05–3.28) | 0.423 | |
AA | 9 (14.3) | 54 (85.7) | 0.24 (0.04–1.23) | 0.730 | 0.32 (0.04–2.23) | 0.267 | |
Alleles | |||||||
G | 14 (20.0) | 56 (80.0) | 1 | 1 | |||
A | 26 (14.9) | 148 (85.1) | 0.73 (0.37–1.44) | 0.359 | 0.72 (0.32–1.59) | 0.420 | |
rs4291 | |||||||
Genotypes | |||||||
AA | 11 (21.6) | 40 (78.4) | 1 | 1 | |||
TA | 4 (6.8) | 55 (93.2) | 0.26 (0.07–0.89) | 0.003 | 0.23 (0.06–0.85) | 0.027 | 0.013 |
TT | 5 (41.7) | 7 (58.3) | 2.59 (0.68–9.79) | 0.158 | 3.65 (0.86–15.48) | 0.078 | |
Alleles | |||||||
A | 26 (16.1) | 135 (83.9) | 1 | 1 | |||
T | 14 (16.9) | 69 (83.1) | 1.20 (0.61–2.39) | 0.596 | 1.27 (0.54–3.01) | 0.571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masilela, C.; Adeniyi, O.V.; Benjeddou, M. Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension. Genes 2022, 13, 1394. https://doi.org/10.3390/genes13081394
Masilela C, Adeniyi OV, Benjeddou M. Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension. Genes. 2022; 13(8):1394. https://doi.org/10.3390/genes13081394
Chicago/Turabian StyleMasilela, Charity, Oladele Vincent Adeniyi, and Mongi Benjeddou. 2022. "Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension" Genes 13, no. 8: 1394. https://doi.org/10.3390/genes13081394
APA StyleMasilela, C., Adeniyi, O. V., & Benjeddou, M. (2022). Single Nucleotide Polymorphisms in Amlodipine-Associated Genes and Their Correlation with Blood Pressure Control among South African Adults with Hypertension. Genes, 13(8), 1394. https://doi.org/10.3390/genes13081394