The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
- Concentration of triglycerides (TG) above 1.7 mmol/L or lipid-lowering therapy;
- Concentration of high-density lipoproteins (HDL) less than 1.03 mmol/L in men and 1.29 mmol/L in women;
- The level of blood pressure (BP) is greater than or equal to 130/85 mm Hg or the fact of antihypertensive therapy;
- The concentration of glucose in the blood serum is higher than or equal to 5.6 mmol/L or the fact of previously diagnosed type 2 diabetes mellitus.
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [Green Version]
- Green, M.F. Impact of cognitive and social cognitive impairment on functional outcomes in patients with schizophrenia. J. Clin. Psychiatry 2016, 77 (Suppl. 2), 8–11. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Akdede, B.B.; Alptekin, K. The relationship between cognitive impairment in schizophrenia and metabolic syndrome: A systematic review and meta-analysis. Psychol. Med. 2017, 47, 1030–1040, Erratum in: Psychol. Med. 2018, 48, 1224. [Google Scholar] [CrossRef] [PubMed]
- Mihaljević-Peleš, A.; Bajs Janović, M.; Šagud, M.; Živković, M.; Janović, Š.; Jevtović, S. Cognitive deficit in schizophrenia: An overview. Psychiatr. Danub. 2019, 31 (Suppl. 2), 139–142. [Google Scholar] [PubMed]
- Saha, S.; Chant, D.; McGrath, J. Meta-analyses of the incidence and prevalence of schizophrenia: Conceptual and methodological issues. Int. J. Methods Psychiatr. Res. 2008, 17, 55–61. [Google Scholar] [CrossRef]
- Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global Epidemiology and Burden of Schizophrenia: Findings from the Global Burden of Disease Study 2016. Schizophr. Bull. 2018, 44, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Staring, A.B.P.; Van der Gaag, M.; Koopmans, G.T.; Selten, J.P.; Van Beveren, J.M.; Hengeveld, M.W.; Loonen, A.J.M.; Mulder, C.L. Treatment adherence therapy in people with psychotic disorders: Randomised controlled trial. Br. J. Psychiatry 2010, 197, 448–455. [Google Scholar] [CrossRef]
- Al Hadithy, A.F.Y.; Ivanova, S.A.; Pechlivanoglou, P.; Semke, A.; Fedorenko, O.; Kornetova, E.; Ryadovaya, L.; Brouwers, J.R.B.J.; Wilffert, B.; Bruggeman, R.; et al. Tardive dyskinesia and DRD3, HTR2A and HTR2C gene polymorphisms in Russian psychiatric inpatients from Siberia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 475–481. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Loonen, A.J.M.; Pechlivanoglou, P.; Freidin, M.B.; Al Hadithy, A.F.Y.; Rudikov, E.V.; Zhukova, I.A.; Govorin, N.V.; Sorokina, V.A.; Fedorenko, O.Y.; et al. NMDA receptor genotypes associated with the vulnerability to develop dyskinesia. Transl. Psychiatry 2012, 2, e67. [Google Scholar] [CrossRef]
- Ivanova, S.A.; Loonen, A.J.M.; Bakker, P.R.; Freidin, M.B.; Ter Woerds, N.J.; Al Hadithy, A.F.Y.; Semke, A.V.; Fedorenko, O.Y.; Brouwers, J.R.B.J.; Bokhan, N.A.; et al. Likelihood of mechanistic roles for dopaminergic, serotonergic and glutamatergic receptors in tardive dyskinesia: A comparison of genetic variants in two independent patient populations. SAGE Open Med. 2016, 4, 2050312116643673. [Google Scholar] [CrossRef] [PubMed]
- Pozhidaev, I.V.; Paderina, D.Z.; Fedorenko, O.Y.; Kornetova, E.G.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. 5-Hydroxytryptamine Receptors and Tardive Dyskinesia in Schizophrenia. Front. Mol. Neurosci. 2020, 13, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boiko, A.S.; Ivanova, S.A.; Pozhidaev, I.V.; Freidin, M.B.; Osmanova, D.Z.; Fedorenko, O.Y.; Semke, A.V.; Bokhan, N.A.; Wilffert, B.; Loonen, A.J.M. Pharmacogenetics of tardive dyskinesia in schizophrenia: The role of CHRM1 and CHRM2 muscarinic receptors. World J. Biol. Psychiatry 2020, 21, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, S.A.; Osmanova, D.Z.; Freidin, M.B.; Fedorenko, O.Y.; Boiko, A.S.; Pozhidaev, I.V.; Semke, A.V.; Bokhan, N.A.; Agarkov, A.A.; Wilffert, B.; et al. Identification of 5-hydroxytryptamine receptor gene polymorphisms modulating hyperprolactinaemia in antipsychotic drug-treated patients with schizophrenia. World J. Biol. Psychiatry 2017, 18, 239–246. [Google Scholar] [CrossRef] [Green Version]
- Osmanova, D.Z.; Freidin, M.B.; Fedorenko, O.Y.; Pozhidaev, I.V.; Boiko, A.S.; Vyalova, N.M.; Tiguntsev, V.V.; Kornetova, E.G.; Loonen, A.J.M.; Semke, A.V.; et al. A pharmacogenetic study of patients with schizophrenia from West Siberia gets insight into dopaminergic mechanisms of antipsychotic-induced hyperprolactinemia. BMC Med. Genet. 2019, 20 (Suppl. 1), 47. [Google Scholar] [CrossRef] [Green Version]
- Paderina, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Bocharova, A.V.; Mednova, I.A.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Semke, A.V.; Bokhan, N.A.; et al. Genetic Polymorphisms of 5-HT Receptors and Antipsychotic-Induced Metabolic Dysfunction in Patients with Schizophrenia. J. Pers. Med. 2021, 11, 181. [Google Scholar] [CrossRef]
- Boiko, A.S.; Pozhidaev, I.V.; Paderina, D.Z.; Bocharova, A.V.; Mednova, I.A.; Fedorenko, O.Y.; Kornetova, E.G.; Loonen, A.J.M.; Semke, A.V.; Bokhan, N.A.; et al. Search for Possible Associations of FTO Gene Polymorphic Variants with Metabolic Syndrome, Obesity and Body Mass Index in Schizophrenia Patients. Pharm. Pers. Med. 2021, 14, 1123–1131. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Mitchell, A.J.; De Hert, M.; Wampers, M.; Ward, P.B.; Rosenbaum, S.; Correll, C.U. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: A systematic review and meta-analysis. World Psychiatry 2015, 14, 339–347. [Google Scholar] [CrossRef]
- Penninx, B.W.J.H.; Lange, S.M.M. Metabolic syndrome in psychiatric patients: Overview, mechanisms, and implications. Dialogues Clin. Neurosci. 2018, 20, 63–73. [Google Scholar] [CrossRef]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Goncharova, A.A.; Gerasimova, V.I.; Pozhidaev, I.V.; Boiko, A.S.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; et al. Comparative Characteristics of the Metabolic Syndrome Prevalence in Patients With Schizophrenia in Three Western Siberia Psychiatric Hospitals. Front. Psychiatry 2021, 12, 661174. [Google Scholar] [CrossRef]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, D.C.; Vincenzi, B.; Andrea, N.V.; Ulloa, M.; Copeland, P.M. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry 2015, 2, 452–464. [Google Scholar] [CrossRef]
- Abosi, O.; Lopes, S.; Schmitz, S.; Fiedorowicz, J.G. Cardiometabolic effects of psychotropic medications. Horm. Mol. Biol. Clin. Investig. 2018, 36, 20170065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Apolipoprotein serum levels related to metabolic syndrome in patients with schizophrenia. Heliyon 2019, 5, e02033. [Google Scholar] [CrossRef] [Green Version]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Bokhan, N.A.; Semke, A.V.; Loonen, A.J.M.; Ivanova, S.A. Cortisol and DHEAS Related to Metabolic Syndrome in Patients with Schizophrenia. Neuropsychiatr. Dis. Treat. 2020, 16, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Kornetova, E.G.; Kornetov, A.N.; Mednova, I.A.; Lobacheva, O.A.; Gerasimova, V.I.; Dubrovskaya, V.V.; Tolmachev, I.V.; Semke, A.V.; Loonen, A.J.M.; Bokhan, N.A.; et al. Body Fat Parameters, Glucose and Lipid Profiles, and Thyroid Hormone Levels in Schizophrenia Patients with or without Metabolic Syndrome. Diagnostics 2020, 10, 683. [Google Scholar] [CrossRef]
- Mednova, I.A.; Boiko, A.S.; Kornetova, E.G.; Parshukova, D.A.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites 2020, 10, 410. [Google Scholar] [CrossRef]
- Boiko, A.S.; Mednova, I.A.; Kornetova, E.G.; Gerasimova, V.I.; Kornetov, A.N.; Loonen, A.J.M.; Bokhan, N.A.; Ivanova, S.A. Cytokine Level Changes in Schizophrenia Patients with and without Metabolic Syndrome Treated with Atypical Antipsychotics. Pharmaceuticals 2021, 14, 446. [Google Scholar] [CrossRef]
- Seeman, P.; Lee, T.; Chau-Wong, M.; Wong, K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976, 261, 717–719. [Google Scholar] [CrossRef]
- Creese, I.; Burt, D.R.; Snyder, S.H. Dopamine receptors and average clinical doses. Science 1976, 194, 546. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness: Evolution and role in mental disorders. Acta Neuropsychiatr. 2018, 30, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmiter, R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci. 2007, 30, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Wang, G.J.; Baler, R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011, 15, 37–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, K.; Thanos, P.K.; Gold, M.S. Dopamine and glucose, obesity, and reward deficiency syndrome. Front. Psychol. 2014, 5, 919. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.J.; Volkow, N.D.; Logan, J.; Pappas, N.R.; Wong, C.T.; Zhu, W.; Netusil, N.; Fowler, J.S. Brain dopamine and obesity. Lancet 2001, 357, 354–357. [Google Scholar] [CrossRef]
- Lett, T.A.; Wallace, T.J.; Chowdhury, N.I.; Tiwari, A.K.; Kennedy, J.L.; Müller, D.J. Pharmacogenetics of antipsychotic-induced weight gain: Review and clinical implications. Mol. Psychiatry 2012, 17, 242–266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.P.; Lencz, T.; Zhang, R.X.; Nitta, M.; Maayan, L.; John, M.; Robinson, D.G.; Fleischhacker, W.W.; Kahn, R.S.; Ophoff, R.A.; et al. Pharmacogenetic Associations of Antipsychotic Drug-Related Weight Gain: A Systematic Review and Meta-analysis. Schizophr. Bull. 2016, 42, 1418–1437. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Facorro, B.; Prieto, C.; Sainz, J. Altered gene expression in antipsychotic-induced weight gain. NPJ Schizophr. 2019, 5, 7. [Google Scholar] [CrossRef]
- Sainz, J.; Prieto, C.; Crespo-Facorro, B. Sex differences in gene expression related to antipsychotic induced weight gain. PLoS ONE 2019, 14, e0215477. [Google Scholar] [CrossRef] [Green Version]
- Corfitsen, H.T.; Krantz, B.; Larsen, A.; Drago, A. Molecular pathway analysis associates alterations in obesity-related genes and antipsychotic-induced weight gain. Acta Neuropsychiatr. 2020, 32, 72–83. [Google Scholar] [CrossRef]
- Lencz, T.; Malhotra, A.K. Pharmacogenetics of antipsychotic-induced side effects. Dialogues Clin. Neurosci. 2009, 11, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.J.; Zai, C.C.; Sicard, M.; Remington, E.; Souza, R.P.; Tiwari, A.K.; Hwang, R.; Likhodi, O.; Shaikh, S.; Freeman, N.; et al. Systematic analysis of dopamine receptor genes (DRD1-DRD5) in antipsychotic-induced weight gain. Pharm. J. 2012, 12, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Cao, T.; Wu, X.; Tang, M.; Xiang, D.; Cai, H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front. Pharmacol. 2020, 10, 1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gassó, P.; Arnaiz, J.A.; Mas, S.; Lafuente, A.; Bioque, M.; Cuesta, M.J.; Díaz-Caneja, C.M.; García, C.; Lobo, A.; González-Pinto, A.; et al. Association study of candidate genes with obesity and metabolic traits in antipsychotic-treated patients with first-episode psychosis over a 2-year period. J. Psychopharmacol. 2020, 34, 514–523. [Google Scholar] [CrossRef]
- Lawford, B.R.; Barnes, M.; Morris, C.P.; Noble, E.P.; Nyst, P.; Heslop, K.; Young, R.M.; Voisey, J.; Connor, J.P. Dopamine 2 Receptor Genes Are Associated with Raised Blood Glucose in Schizophrenia. Can. J. Psychiatry 2016, 61, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Puangpetch, A.; Srisawasdi, P.; Unaharassamee, W.; Jiratjintana, N.; Vanavanan, S.; Punprasit, S.; Na Nakorn, C.; Sukasem, C.; Kroll, M.H. Association between polymorphisms of LEP, LEPR, DRD2, HTR2A and HTR2C genes and risperidone- or clozapine-induced hyperglycemia. Pharmgenomics Pers. Med. 2019, 12, 155–166. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Andreasen, N.C.; Pressler, M.; Nopoulos, P.; Miller, D.; Ho, B.C. Antipsychotic dose equivalents and dose-years: A standardized method for comparing exposure to different drugs. Biol. Psychiatry 2010, 67, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome--a new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef]
- Pijl, H.; Romijn, J.A. Obesity, dopamine and the metabolic syndrome: Potential of dopaminergic agents in the control of metabolism. Curr. Opin. Endocrinol. Diabetes 2006, 13, 179–184. [Google Scholar] [CrossRef]
- Arinami, T.; Gao, M.; Hamaguchi, H.; Toru, M. A functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum. Mol. Genet. 1997, 6, 577–582. [Google Scholar] [CrossRef]
- Pohjalainen, T.; Någren, K.; Syvälahti, E.K.; Hietala, J. The dopamine D2 receptor 5′-flanking variant, -141C Ins/Del, is not associated with reduced dopamine D2 receptor density in vivo. Pharmacogenetics 1999, 9, 505–509. [Google Scholar] [PubMed]
- Jönsson, E.G.; Nöthen, M.M.; Grünhage, F.; Farde, L.; Nakashima, Y.; Propping, P.; Sedvall, G.C. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 1999, 4, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Gluskin, B.S.; Mickey, B.J. Genetic variation and dopamine D2 receptor availability: A systematic review and meta-analysis of human in vivo molecular imaging studies. Transl. Psychiatry 2016, 6, e747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alladi, C.G.; Mohan, A.; Shewade, D.G.; Rajkumar, R.P.; Adithan, S.; Subramanian, K. Risperidone-Induced Adverse Drug Reactions and Role of DRD2 (-141 C Ins/Del) and 5HTR2C (-759 C>T) Genetic Polymorphisms in Patients with Schizophrenia. J. Pharmacol. Pharmacother. 2017, 8, 28–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, I.; Zhang, J.P.; Hagi, K.; Lencz, T.; Kane, J.M.; Yabe, H.; Malhotra, A.K.; Correll, C.U. Variants in the DRD2 locus and antipsychotic-related prolactin levels: A meta-analysis. Psychoneuroendocrinology 2016, 72, 1–10. [Google Scholar] [CrossRef]
- Bakker, P.R.; Bakker, E.; Amin, N.; van Duijn, C.M.; van Os, J.; van Harten, P.N. Candidate gene-based association study of antipsychotic-induced movement disorders in long-stay psychiatric patients: A prospective study. PLoS ONE 2012, 7, e36561. [Google Scholar] [CrossRef] [Green Version]
- Vaiman, E.E.; Shnayder, N.A.; Novitsky, M.A.; Dobrodeeva, V.S.; Goncharova, P.S.; Bochanova, E.N.; Sapronova, M.R.; Popova, T.E.; Tappakhov, A.A.; Nasyrova, R.F. Candidate Genes Encoding Dopamine Receptors as Predictors of the Risk of Antipsychotic-Induced Parkinsonism and Tardive Dyskinesia in Schizophrenic Patients. Biomedicines 2021, 9, 879. [Google Scholar] [CrossRef]
- Aklillu, E.; Kalow, W.; Endrenyi, L.; Harper, P.; Miura, J.; Ozdemir, V. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet. Genom. 2007, 17, 989–993. [Google Scholar] [CrossRef]
- Lencz, T.; Robinson, D.G.; Napolitano, B.; Sevy, S.; Kane, J.M.; Goldman, D.; Malhotra, A.K. DRD2 promoter region variation predicts antipsychotic-induced weight gain in first episode schizophrenia. Pharm. Genom. 2010, 20, 569–572. [Google Scholar] [CrossRef] [Green Version]
- Aliasghari, F.; Nazm, S.A.; Yasari, S.; Mahdavi, R.; Bonyadi, M. Associations of the ANKK1 and DRD2 gene polymorphisms with overweight, obesity and hedonic hunger among women from the Northwest of Iran. Eat Weight Disord. 2021, 26, 305–312. [Google Scholar] [CrossRef]
- Hong, C.J.; Liou, Y.J.; Bai, Y.M.; Chen, T.T.; Wang, Y.C.; Tsai, S.J. Dopamine receptor D2 gene is associated with weight gain in schizophrenic patients under long-term atypical antipsychotic treatment. Pharm. Genom. 2010, 20, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Shibli-Rahhal, A.; Schlechte, J. The effects of hyperprolactinemia on bone and fat. Pituitary 2009, 12, 96–104. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Silva, C.M.; Barbosa, F.R.; Lima, G.A.; Warszawski, L.; Fontes, R.; Domingues, R.C.; Gadelha, M.R. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity 2011, 19, 800–805. [Google Scholar] [CrossRef]
- Auriemma, R.S.; De Alcubierre, D.; Pirchio, R.; Pivonello, R.; Colao, A. The effects of hyperprolactinemia and its control on metabolic diseases. Expert Rev. Endocrinol. Metab. 2018, 13, 99–106. [Google Scholar] [CrossRef]
- Al Sabie, F.; Tariq, Z.; Erickson, D.; Donegan, D. Association Between Prolactinoma and Body Mass Index. Endocr. Pract. 2021, 27, 312–317. [Google Scholar] [CrossRef]
- Aslanoglou, D.; Bertera, S.; Sánchez-Soto, M.; Benjamin Free, R.; Lee, J.; Zong, W.; Xue, X.; Shrestha, S.; Brissova, M.; Logan, R.W.; et al. Dopamine regulates pancreatic glucagon and insulin secretion via adrenergic and dopaminergic receptors. Transl. Psychiatry 2021, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Grande, C.; Usiello, A.; Gubellini, P.; Erbs, E.; Martin, A.B.; Pisani, A.; Tognazzi, N.; Bernardi, G.; Moratalla, R.; et al. Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J. Neurosci. 2003, 23, 6245–6254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabresi, P.; Picconi, B.; Tozzi, A.; Di Filippo, M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007, 30, 211–219. [Google Scholar] [CrossRef]
- Lovinger, D.M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 2010, 58, 951–961. [Google Scholar] [CrossRef] [Green Version]
- Matikainen-Ankney, B.A.; Kravitz, A.V. Persistent effects of obesity: A neuroplasticity hypothesis. Ann. N. Y. Acad. Sci. 2018, 1428, 221–239. [Google Scholar] [CrossRef]
Parameter | Patients without MetS, n = 378 (73.1%) | Patients with MetS, n = 139 (26.9%) | p Value | |
---|---|---|---|---|
Gender | Women | 165 (43.7%) | 83 (59.7%) | 0.002 |
Men | 213 (56.3%) | 56 (40.3%) | ||
Mean age (M ± SD) | 39.03 ± 11.65 | 44.19 ± 11.51 | <0.0001 | |
Mean duration of illness (Me [Q1; Q3]) | 12.0 [6.0; 20.0] | 17.0 [9.5; 22.5] | 0.001 | |
Mean CPZeq, dose (Me [Q1; Q3]) | 442.4 [250.0; 758.7] | 442.4 [225.0; 778.7] | 0.775 | |
Body mass index (BMI) (M ± SD) | 24.40 ± 4.85 | 31.04 ± 5.78 | <0.0001 |
Variable | Women | p Value | Men | p Value | ||
---|---|---|---|---|---|---|
Without MetS, n = 165, (%) | With MetS, n = 83, (%) | Without MetS, n = 213, (%) | With MetS, n = 56, (%) | |||
WC > 94 cm in men; WC > 80 cm in women | 75 (45.5) | 83 (100) | p < 0.001 | 29 (13.6) | 56 (100) | p < 0.001 |
TG > 1.7 mmol/L or lipid-lowering therapy | 16 (9.7) | 53 (63.9) | p < 0.001 | 29 (13.6) | 45 (80.4) | p < 0.001 |
HDL < 1.03 mmol/L in men; HDL < 1.29 mmol/L in women | 98 (59.4) | 74 (89.2) | p < 0.001 | 111 (52.1) | 49 (87.5) | p < 0.001 |
SBP ≥ 130/85 mm Hg or the fact of antihypertensive therapy | 27 (16.4) | 49 (59.0) | p < 0.001 | 37 (17.4) | 29 (51.8) | p < 0.001 |
FBS ≥ 5.6 mmol/L or the fact of previously diagnosed type 2 diabetes mellitus | 18 (10.9) | 38 (45.8) | p < 0.001 | 42 (19.7) | 18 (32.1) | p = 0.047 |
SNP | Genotypes, Alleles | Patients without MetS | Patients with MetS | OR | 95% CI | χ² | p Value |
---|---|---|---|---|---|---|---|
rs1799732 | GG | 281 (81.4) | 91 (72.8) | 0.61 | 0.38–0.98 | 5.76 | 0.056 |
G.DEL | 58 (16.8) | 33 (26.4) | 1.77 | 1.09–2.89 | |||
DEL.DEL | 6 (1.7) | 1 (0.8) | 0.46 | 0.05–3.82 | |||
G | 620 (89.9) | 215 (86.0) | 0.69 | 0.45–1.07 | 2.75 | 0.097 | |
DEL | 70 (10.1) | 35 (14.0) | 1.44 | 0.93–2.23 | |||
rs4436578 | CC | 14 (4.0) | 5 (4.0) | 1.00 | 0.35–2.83 | 0.37 | 0.830 |
CT | 88 (25.4) | 35 (28.2) | 1.15 | 0.73–1.83 | |||
TT | 244 (70.5) | 84 (67.7) | 0.88 | 0.56–1.37 | |||
C | 116 (16.8) | 45 (18.1) | 1.10 | 0.75–1.61 | 0.25 | 0.620 | |
T | 576 (83.2) | 203 (81.9) | 0.91 | 0.62–1.33 |
SNP | Genotypes, Alleles | Patients without MetS | Patients with MetS | OR | 95% CI | χ² | p Value |
---|---|---|---|---|---|---|---|
rs1799732 | GG | 130 (87.2) | 51 (70.8) | 0.35 | 0.18–0.71 | 8.83 | 0.012 |
G.DEL | 18 (12.1) | 20 (27.8) | 2.80 | 1.37–5.71 | |||
DEL.DEL | 1 (0.7) | 1 (1.4) | - | - | |||
G | 278 (93.3) | 122 (84.7) | 0.40 | 0.21–0.76 | 8.28 | 0.004 | |
DEL | 20 (6.7) | 22 (15.3) | 2.51 | 1.32–4.76 | |||
rs4436578 | CC | 6 (4.0) | 2 (2.8) | 0.68 | 0.13–3.46 | 0.25 | 0.880 |
CT | 35 (23.5) | 18 (25.0) | 1.09 | 0.56–2.09 | |||
TT | 108 (72.5) | 52 (72.2) | 0.99 | 0.53–1.85 | |||
C | 47 (15.8) | 22 (15.3) | 0.96 | 0.56–1.67 | 0.02 | 0.893 | |
T | 251 (84.2) | 122 (84.7) | 1.04 | 0.60–1.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paderina, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Mednova, I.A.; Goncharova, A.A.; Bocharova, A.V.; Fedorenko, O.Y.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; et al. The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia. Genes 2022, 13, 1312. https://doi.org/10.3390/genes13081312
Paderina DZ, Boiko AS, Pozhidaev IV, Mednova IA, Goncharova AA, Bocharova AV, Fedorenko OY, Kornetova EG, Semke AV, Bokhan NA, et al. The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia. Genes. 2022; 13(8):1312. https://doi.org/10.3390/genes13081312
Chicago/Turabian StylePaderina, Diana Z., Anastasiia S. Boiko, Ivan V. Pozhidaev, Irina A. Mednova, Anastasia A. Goncharova, Anna V. Bocharova, Olga Yu. Fedorenko, Elena G. Kornetova, Arkadiy V. Semke, Nikolay A. Bokhan, and et al. 2022. "The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia" Genes 13, no. 8: 1312. https://doi.org/10.3390/genes13081312
APA StylePaderina, D. Z., Boiko, A. S., Pozhidaev, I. V., Mednova, I. A., Goncharova, A. A., Bocharova, A. V., Fedorenko, O. Y., Kornetova, E. G., Semke, A. V., Bokhan, N. A., Loonen, A. J. M., & Ivanova, S. A. (2022). The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia. Genes, 13(8), 1312. https://doi.org/10.3390/genes13081312