Detoxification Role of Metabolic Glutathione S-Transferase (GST) Genes in Blood Lead Concentrations of Jamaican Children with and without Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Epidemiological Research on Autism in Jamaica (ERAJ) Studies
2.2. Assessment of Pb Exposure
2.3. Genetic Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Canfield, R.L.; Henderson, C.R., Jr.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N. Engl. J Med 2003, 348, 1517–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Academy of Pediatrics Committee on Environmental Health Lead exposure in children: Prevention, detection, and management. Pediatrics 2005, 116, 1036–1046. [CrossRef] [PubMed] [Green Version]
- Mendola, P.; Selevan, S.G.; Gutter, S.; Rice, D. Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 188–197. [Google Scholar] [CrossRef]
- Ettinger, A.S.; Leonard, M.L.; Mason, J. CDC’s Lead Poisoning Prevention Program: A Long-standing Responsibility and Commitment to Protect Children from Lead Exposure. J. Public Health Manag. Pract. 2019, 25, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kwon, H.J.; Lim, M.H.; Jee, Y.K.; Hong, Y.C.; Leem, J.H.; Sakong, J.; Bae, J.M.; Hong, S.J.; Roh, Y.M.; et al. Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: A report of the children’s health and environment research (CHEER). Neurotoxicology 2009, 30, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr 2008, 20, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C.; Stiles, K.M.; Needleman, H.L. Low-level lead exposure, intelligence and academic achievement: A long-term follow-up study. Pediatrics 1992, 90, 855–861. [Google Scholar] [CrossRef]
- Fido, A.; Al-Saad, S. Toxic trace elements in the hair of children with autism. Autism 2005, 9, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav. Brain Funct. 2014, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi Priya, M.; Geetha, A. Level of Trace Elements (Copper, Zinc, Magnesium and Selenium) and Toxic Elements (Lead and Mercury) in the Hair and Nail of Children with Autism. Biol. Trace Elem. Res. 2010, 142, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Blaurock-Busch, E.; Amin, O.R.; Dessoki, H.H.; Rabah, T. Toxic Metals and Essential Elements in Hair and Severity of Symptoms among Children with Autism. Maedica 2012, 7, 38–48. [Google Scholar] [PubMed]
- Yorbik, O.; Kurt, I.; Hasimi, A.; Ozturk, O. Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biol. Trace Elem. Res. 2010, 135, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Green, P.G.; Stamova, B.; Hertz-Picciotto, I.; Pessah, I.N.; Hansen, R.; Yang, X.; Gregg, J.P.; Ashwood, P.; Jickling, G.; et al. Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls. Neurotox. Res. 2011, 19, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Lee, M.; Zhang, J.; Hessabi, M.; Bressler, J.; Bach, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between a Mixture of Heavy Metals (Lead, Mercury, Arsenic, Cadmium, Manganese, Aluminum) and GSTP1, GSTT1, and GSTM1 in Relation to Autism Spectrum Disorder. Res. Autism Spectr. Disord. 2020, 79, 101681. [Google Scholar] [CrossRef] [PubMed]
- Abd Wahil, M.S.; Ja’afar, M.H.; Md, I.Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: A Case-Control Study Among Preschool Children in Malaysia. Biol. Trace Elem. Res. 2022, 1, 97–121. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Perkins, G.A.; Scott, R.; Perez, A.; Ellisman, M.H.; Johnson, J.E.; Fox, D.A. Bcl-xL-mediated remodeling of rod and cone synaptic mitochondria after postnatal lead exposure: Electron microscopy, tomography and oxygen consumption. Mol. Vis. 2012, 18, 3029–3048. [Google Scholar]
- Geier, D.A.; King, P.G.; Geier, M.R. Mitochondrial dysfunction, impaired oxidative-reduction activity, degeneration, and death in human neuronal and fetal cells induced by low-level exposure to thimerosal and other metal compounds. Toxicol. Environ. Chem. 2009, 91, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Liu, P.; Li, Y.; Du, M.; Xing, X.; Wang, D. Inhibition of ROS elevation and damage to mitochondrial function prevents lead-induced neurotoxic effects on structures and functions of AFD neurons in Caenorhabditis elegans. J. Environ. Sci. 2012, 24, 733–742. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Whitworth, R.H.; Baloh, R.W.; Staehling, N.W.; Barthel, W.F.; Rosenblum, B.F. Neuropsychological dysfunction in children with chronic low-level lead absorption. Lancet 1975, 1, 708–712. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Hao, K.; Shi, R.; Zhao, G.; Jiang, G.X.; Song, Y.; Xu, X.; Ma, J. Glutathione S-transferase M1 (GSTM1) and glutathione S-transferase T1 (GSTT1) null polymorphisms, smoking, and their interaction in oral cancer: A HuGE review and meta-analysis. Am. J. Epidemiol. 2011, 173, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Strange, R.C. Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology 2000, 61, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.B.; Drummen, G.P.; Jiang, Z.P.; Qin, Y.H. GSTT1 polymorphism and the risk of developing prostate cancer. Am. J. Epidemiol. 2014, 180, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Coleman, W.B.; Tsongalis, G.J. Essential Concepts in Molecular Pathology; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Josephy, P.D. Genetic variations in human glutathione transferase enzymes: Significance for pharmacology and toxicology. Hum. Genom. Proteom. 2010, 2010, 876940. [Google Scholar] [CrossRef] [Green Version]
- Sirivarasai, J.; Wananukul, W.; Kaojarern, S.; Chanprasertyothin, S.; Thongmung, N.; Ratanachaiwong, W.; Sura, T.; Sritara, P. Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. Biomed. Res. Int. 2013, 2013, 474963. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, K.H.; Yoo, D.H.; Kang, D.; Cho, S.H.; Hong, Y.C. GSTM1 and TNF-alpha gene polymorphisms and relations between blood lead and inflammatory markers in a non-occupational population. Mutat. Res. 2007, 629, 32–39. [Google Scholar] [CrossRef]
- Eum, K.D.; Wang, F.T.; Schwartz, J.; Hersh, C.P.; Kelsey, K.; Wright, R.O.; Spiro, A.; Sparrow, D.; Hu, H.; Weisskopf, M.G. Modifying roles of glutathione S-transferase polymorphisms on the association between cumulative lead exposure and cognitive function. Neurotoxicology 2013, 39, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Hansen, R.L.; Hartiala, J.; Allayee, H.; Schmidt, L.C.; Tancredi, D.J.; Tassone, F.; Hertz-Picciotto, I. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology 2011, 22, 476–485. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, B.; Sarkans, U.; Schumann, G.; Persico, A.M. Biomarkers in autism spectrum disorder: The old and the new. Psychopharmacology 2014, 231, 1201–1216. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, D.A.; Frye, R.E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frustaci, A.; Neri, M.; Cesario, A.; Adams, J.B.; Domenici, E.; Dalla, B.B.; Bonassi, S. Oxidative stress-related biomarkers in autism: Systematic review and meta-analyses. Free Radic. Biol. Med. 2012, 52, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- Bilbo, S.D.; Nevison, C.D.; Parker, W. A model for the induction of autism in the ecosystem of the human body: The anatomy of a modern pandemic? Microb. Ecol. Health Dis. 2015, 26, 26253. [Google Scholar] [CrossRef]
- James, S.J.; Melnyk, S.; Jernigan, S.; Cleves, M.A.; Halsted, C.H.; Wong, D.H.; Cutler, P.; Bock, K.; Boris, M.; Bradstreet, J.J.; et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.A.; Mars, A.E.; Buyske, S.G.; Stenroos, E.S.; Wang, R.; Factura-Santiago, M.F.; Lambert, G.H.; Johnson, W.G. Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype. Arch. Pediatr. Adolesc. Med. 2007, 161, 356–361. [Google Scholar]
- Buyske, S.; Williams, T.A.; Mars, A.E.; Stenroos, E.S.; Ming, S.X.; Wang, R.; Sreenath, M.; Factura, M.F.; Reddy, C.; Lambert, G.H.; et al. Analysis of case-parent trios at a locus with a deletion allele: Association of GSTM1 with autism. BMC Genet. 2006, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Loveland, K.A.; Hessabi, M.; Dickerson, A.S.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Interaction between GSTT1 and GSTP1 allele variants as a risk modulating-factor for autism spectrum disorders. Res. Autism Spectr. Disord. 2015, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Rahbar, M.H.; Samms-Vaughan, M.; Bressler, J.; Bach, M.A.; Hessabi, M.; Grove, M.L.; Shakespeare-Pellington, S.; Coore, D.C.; Reece, J.A.; et al. A generalized weighted quantile sum approach for analyzing correlated data in the presence of interactions. Biom. J. 2019, 61, 934–954. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Loveland, K.A.; Ardjomand-Hessabi, M.; Dickerson, A.S.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of Metabolic Genes in Blood Arsenic Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2014, 11, 7874–7895. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Saroukhani, S.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A.; Beecher, C.; McLaughlin, W. Associations of Metabolic Genes (GSTT1, GSTP1, GSTM1) and Blood Mercury Concentrations Differ in Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2021, 18, 1377. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Pitcher, M.R.; Bressler, J.; Hessabi, M.; Loveland, K.A.; Christian, M.A.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of Metabolic Genes in Blood Aluminum Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2016, 13, 1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; Boerwinkle, E. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ. Health 2014, 13, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S.; Gotham, K.; Bishop, D.V.; Luyster, R.J.; Guthrie, W. (ADOS-2) Autism Diagnostic Observation Schedule, 2nd ed.; WPS Publish: Torrance, CA, USA, 2012. [Google Scholar]
- Rutter, M.; Le, C.A.; Lord, C. Autism Diagnostic Interview-Revised (ADI-R); Western Psychological Services: Los Angeles, CA, USA, 2003. [Google Scholar]
- Rutter, M.; Bailey, A.; Lord, C. SCQ: The Social Communication Questionnaire. Manual; Western Psychological Services: Los Angeles, CA, USA, 2003. [Google Scholar]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Lee, M.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; et al. Role of fruits, grains, and seafood consumption in blood cadmium concentrations of Jamaican children with and without Autism Spectrum Disorder. Res. Autism Spectr. Disord. 2014, 8, 1134–1145. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Hessabi, M.; Bressler, J.; Desai, C.C.; Shakespeare-Pellington, S.; Reece, J.A.; Morgan, R.; Loveland, K.A.; et al. Concentration of lead, mercury, cadmium, aluminum, arsenic and manganese in umbilical cord blood of Jamaican newborns. Int. J. Environ. Res. Public Health 2015, 12, 4481–4501. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Boerwinkle, E. Factors associated with blood lead concentrations of children in Jamaica. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2015, 50, 529–539. [Google Scholar]
- Richardson, A. Logistic Regression: A SelfGÇÉLearning Text, Third Edition by David G. Kleinbaum, Mitchel Klein. Int. Stat. Rev. 2011, 79, 296. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS® 9.4.; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Bach, M.A.; Samms-Vaughan, M.; Hessabi, M.; Bressler, J.; Lee, M.; Zhang, J.; Shakespeare-Pellington, S.; Grove, M.L.; Loveland, K.A.; Rahbar, M.H. Association of polychlorinated biphenyls and organochlorine pesticides with autism spectrum disorder in Jamaican children. Res. Autism Spectr. Disord. 2020, 76, 101587. [Google Scholar] [CrossRef]
- Yasuda, H.; Yonashiro, T.; Yoshida, K.; Ishii, T.; Tsutsui, T. Mineral Imbalance in Children with Autistic Disorders. Biomed. Res. Trace Elem. 2005, 16, 285–292. [Google Scholar]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Bjørklund, G.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab. Brain Dis. 2017, 32, 195–202. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Ibrahim, S.H.; Azam, S.I.; Hessabi, M.; Karim, F.; Kim, S.; Zhang, J.; Gulzar Ali, N.; Loveland, K.A. Concentrations of Lead, Mercury, Arsenic, Cadmium, Manganese, and Aluminum in the Blood of Pakistani Children with and without Autism Spectrum Disorder and Their Associated Factors. Int. J. Environ. Res. Public Health 2021, 18, 8625. [Google Scholar] [CrossRef] [PubMed]
- Gangoso, L.; Alvarez-Lloret, P.; Rodriguez-Navarro, A.A.; Mateo, R.; Hiraldo, F.; Donazar, J.A. Long-term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ. Pollut. 2009, 157, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T. Biomarkers of lead exposure. Ind. Health 2000, 38, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F., Jr.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef] [Green Version]
- Bandini, L.G.; Curtin, C.; Phillips, S.; Anderson, S.E.; Maslin, M.; Must, A. Changes in Food Selectivity in Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, K.L.; Anderson, S.E.; Curtin, C.; Must, A.; Bandini, L.G. A comparison of food refusal related to characteristics of food in children with autism spectrum disorder and typically developing children. J. Acad. Nutr. Diet. 2014, 114, 1981–1987. [Google Scholar] [CrossRef] [Green Version]
- Sharp, W.G.; Postorino, V.; McCracken, C.E.; Berry, R.C.; Criado, K.K.; Burrell, T.L.; Scahill, L. Dietary Intake, Nutrient Status, and Growth Parameters in Children with Autism Spectrum Disorder and Severe Food Selectivity: An Electronic Medical Record Review. J. Acad. Nutr. Diet. 2018, 118, 1943–1950. [Google Scholar] [CrossRef]
- Devóz, P.P.; Reis, M.B.D.; Gomes, W.R.; Maraslis, F.T.; Ribeiro, D.L.; Antunes, L.M.G.; Batista, B.L.; Grotto, D.; Reis, R.M.; Barbosa, F., Jr.; et al. Adaptive epigenetic response of glutathione (GSH)-related genes against lead (Pb)-induced toxicity, in individuals chronically exposed to the metal. Chemosphere 2021, 269, 128758. [Google Scholar] [CrossRef]
- Lamichhane, D.K.; Leem, J.H.; Park, C.S.; Ha, M.; Ha, E.H.; Kim, H.C.; Lee, J.Y.; Ko, J.K.; Kim, Y.; Hong, Y.C. Associations between prenatal lead exposure and birth outcomes: Modification by sex and GSTM1/GSTT1 polymorphism. Sci. Total Environ. 2018, 619–620, 176–184. [Google Scholar] [CrossRef]
- Yohannes, Y.B.; Nakayama, S.M.M.; Yabe, J.; Toyomaki, H.; Kataba, A.; Nakata, H.; Muzandu, K.; Ikenaka, Y.; Choongo, K.; Ishizuka, M. Glutathione S-transferase gene polymorphisms in association with susceptibility to lead toxicity in lead- and cadmium-exposed children near an abandoned lead-zinc mining area in Kabwe, Zambia. Environ Sci. Pollut. Res. Int. 2022, 29, 66222–66632. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Hessabi, M.; Bressler, J.; Gillani, S.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A. Correlation between concentrations of four heavy metals in cord blood and childhood blood of Jamaican children. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2021, 56, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Categories | ASD Cases (n = 344) n (%) | TD Controls (n = 344) n (%) | p Value * | |
---|---|---|---|---|---|
Child | Sex | Male | 286 (83.1) | 286 (83.1) | 1.00 |
Age | < 48 months | 97 (28.2) | 87 (25.3) | 0.02 | |
≥ 48 months | 247 (71.8) | 257 (74.7) | |||
Race | Afro-Caribbean | 325 (94.5) | 334 (97.1) | 0.10 | |
Place of birth (Parish) | Kingston | 102 (29.6) | 216 (62.8) | <0.01 | |
Others a | 242 (70.4) | 128 (37.2) | |||
Mother’s age b (at child’s birth) | Age < 35 years | 276 (80.5) | 298 (88.2) | <0.01 | |
Age ≥ 35 years | 67 (19.5) | 40 (11.8) | |||
Father’s age c (at child’s birth) | Age < 35 years | 190 (56.2) | 230 (69.7) | <0.01 | |
Age ≥ 35 years | 148 (43.8) | 100 (30.3) | |||
Parental education d (at child’s birth) | Both up to high school † | 128 (37.7) | 169 (51.7) | <0.01 | |
At least one beyond high school †† | 210 (62.3) | 158 (48.3) | |||
Socioeconomic status (SES) | Car ownership | 186 (54.1) | 144 (41.9) | <0.01 | |
GSTP1e | Ile/Ile | 86 (25.2) | 91 (26.5) | 0.48 | |
Ile/Val | 190 (55.7) | 175 (51.0) | |||
Val/Val | 65 (19.1) | 77 (22.4) | |||
GSTM1f | DD g | 103 (30.3) | 82 (24.0) | 0.07 | |
I/I or I/D h | 237 (69.7) | 259 (76.0) | |||
GSTT1i | DD g | 84 (24.6) | 88 (25.9) | 0.60 | |
I/I or I/D h | 257 (75.4) | 252 (74.1) |
Exposure Variables | Category | ASD Cases n (%) | TD Controls n (%) | MOR | 95% CI | p Value b | |
---|---|---|---|---|---|---|---|
Fruit and vegetable consumption a | Root vegetables | Yam, sweet potato, or dasheen | 199 (58.0) | 238 (69.2) | 0.59 | (0.43, 0.82) | <0.01 |
Carrot or pumpkin | 255 (74.3) | 299 (86.9) | 0.44 | (0.30, 0.67) | <0.01 | ||
Leafy vegetables | Lettuce | 145 (42.3) | 213 (61.9) | 0.39 | (0.28, 0.56) | <0.01 | |
Callaloo, broccoli, or pak choi | 240 (70.0) | 280 (81.4) | 0.51 | (0.35, 0.75) | <0.01 | ||
Cabbage | 161 (46.9) | 215 (62.5) | 0.51 | (0.37, 0.70) | <0.01 | ||
Fruits | Tomatoes | 190 (55.4) | 255 (74.1) | 0.43 | (0.31, 0.61) | <0.01 | |
Ackee | 151 (44.0) | 237 (68.9) | 0.30 | (0.20, 0.43) | <0.01 | ||
Avocado | 128 (37.3) | 208 (60.5) | 0.35 | (0.25, 0.50) | <0.01 | ||
Green banana | 199 (58.0) | 243 (70.6) | 0.55 | (0.40, 0.77) | <0.01 | ||
Fried plantains | 247 (72.0) | 292 (84.9) | 0.48 | (0.33, 0.69) | <0.01 | ||
Seafood consumption | Salt water fish | 213 (61.9) | 236 (68.6) | 0.71 | (0.50, 1.00) | 0.05 | |
Fresh water fish (pond fish, tilapia) | 102 (29.7) | 106 (30.8) | 0.94 | (0.66, 1.34) | 0.72 | ||
Sardine, mackerel (canned fish) | 253 (73.6) | 289 (84.0) | 0.52 | (0.35, 0.77) | <0.01 | ||
Tuna (canned fish) | 103 (29.9) | 121 (35.2) | 0.78 | (0.56, 1.08) | 0.13 | ||
Salted fish (pickled mackerel) | 220 (64.0) | 271 (78.8) | 0.50 | (0.36, 0.70) | <0.01 | ||
Shellfish (lobsters, crabs) | 17 (4.9) | 47 (13.7) | 0.33 | (0.19, 0.60) | <0.01 | ||
Shrimp | 34 (9.9) | 60 (17.4) | 0.54 | (0.34, 0.84) | 0.01 |
Variables | Category | Yes | No | p Value ** | ||||
---|---|---|---|---|---|---|---|---|
Mean Pb * (μg/dL) | N | Mean Pb * (μg/dL) | N | |||||
Child | ASD status | ASD | 1.74 | 344 | 2.27 | 344 | <0.01 | |
Age | Age > 48 (months) | 2.29 | 504 | 1.35 | 184 | 0.02 | ||
Sex | Male | 1.99 | 572 | 1.99 | 116 | 0.97 | ||
Place of birth (Parish) | Kingston | 2.39 | 318 | 1.70 | 370 | <0.01 | ||
Socioeconomic status (SES) | Own a car | 1.72 | 330 | 2.28 | 358 | <0.01 | ||
Mother’s age (at child’s birth) a | ≥35 years | 1.73 | 107 | 2.04 | 574 | 0.08 | ||
Parental education levels (at child’s birth) b | At least one of the two parents had education beyond high school | 1.75 | 368 | 2.26 | 296 | <0.01 | ||
Fruit and vegetable consumption c | Root vegetables | Yam, sweet potato, or dasheen | 2.11 | 437 | 1.79 | 250 | 0.03 | |
Carrot or pumpkin | 2.07 | 554 | 1.66 | 133 | 0.01 | |||
Leafy vegetables | Lettuce | 2.02 | 358 | 1.95 | 329 | 0.65 | ||
Callaloo, broccoli, or pak choi | 2.06 | 520 | 1.77 | 167 | 0.07 | |||
Cabbage | 2.06 | 376 | 1.90 | 311 | 0.29 | |||
Fruits | Tomatoes | 2.16 | 445 | 1.71 | 242 | <0.01 | ||
Ackee | 2.26 | 388 | 1.68 | 299 | <0.01 | |||
Avocado | 2.20 | 336 | 1.80 | 351 | <0.01 | |||
Green banana | 2.10 | 442 | 1.80 | 245 | 0.05 | |||
Fried plantains | 2.09 | 539 | 1.65 | 148 | <0.01 | |||
Seafood consumption | Salt water fish | 2.10 | 449 | 1.80 | 239 | 0.05 | ||
Fresh water fish (pond fish, tilapia) | 2.28 | 208 | 1.88 | 480 | 0.02 | |||
Sardine, mackerel (canned fish) | 2.13 | 542 | 1.55 | 146 | <0.01 | |||
Tuna (canned fish) | 2.01 | 224 | 1.98 | 464 | 0.83 | |||
Salted fish (pickled mackerel) | 2.14 | 491 | 1.66 | 197 | <0.01 | |||
Shellfish (lobsters, crabs) | 2.69 | 64 | 1.93 | 624 | 0.01 | |||
Shrimp | 2.18 | 94 | 1.96 | 594 | 0.29 | |||
Genes GSTT1 (n = 337 pairs) GSTM1 (n = 337 pairs) GSTP1 (n = 340 pairs) | GSTT1 (I *) d | 1.96 | 509 | 2.07 | 172 | 0.52 | ||
GSTM1 (I *) d | 2.03 | 496 | 1.90 | 185 | 0.40 | |||
GSTP1 (Ile/Ile) | 1.96 | 177 | 2.00 | 511 | 0.77 | |||
GSTP1 (Val/Val) | 2.00 | 365 | 1.98 | 323 | 0.87 | |||
GSTP1 (Ile/Val) | 2.02 | 142 | 1.98 | 546 | 0.85 |
Models | Gene | (Column A) Genotypes Compared | Referent Genotypes | Group | Unadjusted GM BPbC (μg/dL) a | Adjusted GM BPbC (μg/dL) b | ||||
---|---|---|---|---|---|---|---|---|---|---|
GM BPbC with Genotypes in Column A c | GM BPbC with Referent Genotypes c | p Value d | GM BPbC with Genotypes in Column A c | GM BPbC with Referent Genotypes c | p Value d | |||||
Co-dominant e † | GSTP1 | Ile/Ile | Ile/Val | TD Control | 2.14 | 2.31 | 0.51 | 1.78 | 2.13 | 0.16 |
GSTP1 | Ile/Ile | Ile/Val | ASD Case | 1.74 | 1.78 | 0.87 | 1.55 | 1.78 | 0.25 | |
GSTP1 | Ile/Ile | Val/Val | TD Control | 2.14 | 2.30 | 0.61 | 1.78 | 1.94 | 0.56 | |
GSTP1 | Ile/Ile | Val/Val | ASD Case | 1.74 | 1.68 | 0.80 | 1.55 | 1.50 | 0.82 | |
GSTP1 | Ile/Val | Val/Val | TD Control | 2.31 | 2.30 | 0.96 | 2.13 | 1.94 | 0.45 | |
GSTP1 | Ile/Val | Val/Val | ASD Case | 1.78 | 1.68 | 0.67 | 1.78 | 1.50 | 0.19 | |
Dominant f †† | GSTP1DOM | Ile/Val or Val/Val | Ile/Ile | TD Control | 2.31 | 2.14 | 0.50 | 2.05 | 1.79 | 0.26 |
GSTP1DOM | Ile/Val or Val/Val | Ile/Ile | ASD Case | 1.75 | 1.74 | 0.96 | 1.71 | 1.55 | 0.39 | |
Recessive g ††† | GSTP1REC | Val/Val | Ile/Ile or Ile/Val | TD Control | 2.30 | 2.25 | 0.86 | 1.92 | 2.02 | 0.67 |
GSTP1REC | Val/Val | Ile/Ile or Ile/Val | ASD Case | 1.68 | 1.76 | 0.71 | 1.49 | 1.72 | 0.26 | |
Recessive ⸸ | GSTT1 | I/I or I/D | DD | TD Control | 2.26 | 2.29 | 0.89 | 1.91 | 1.99 | 0.71 |
I/I or I/D | DD | ASD Case | 1.72 | 1.84 | 0.54 | 1.61 | 1.60 | 0.97 | ||
Recessive ‡ | GSTM1 | I/I or I/D | DD | TD Control | 2.26 | 2.31 | 0.84 | 2.04 | 1.81 | 0.34 |
I/I or I/D | DD | ASD Case | 1.78 | 1.67 | 0.54 | 1.71 | 1.58 | 0.48 |
Gene | Models | (Column A) Group Compared | Referent Group | Genotypes | Unadjusted Model (μg/dL) a | Adjusted Model (μg/dL) b | ||||
---|---|---|---|---|---|---|---|---|---|---|
GM BPbC with Group Compared in Column A c | GM BPbC with Referent Group c | p Value d | GM BPbC Group Compared in Column A c | GM BPbC with Referent Group c | p Value d | |||||
GSTP1 | Co-dominant e † | ASD Case | TD Control | Ile/Ile | 1.74 | 2.14 | 0.11 | 1.55 | 1.78 | 0.28 |
ASD Case | TD Control | Ile/Val | 1.78 | 2.31 | <0.01 | 1.78 | 2.13 | 0.03 | ||
ASD Case | TD Control | Val/Val | 1.68 | 2.30 | 0.02 | 1.50 | 1.94 | 0.06 | ||
Dominant f †† | ASD Case | TD Control | Ile/Ile | 1.74 | 2.14 | 0.10 | 1.55 | 1.79 | 0.25 | |
ASD Case | TD Control | Val/Val or Ile/Val | 1.75 | 2.31 | <0.01 | 1.71 | 2.05 | 0.01 | ||
Recessive g ††† | ASD Case | TD Control | Ile/Ile or Ile/Val | 1.76 | 2.25 | <0.01 | 1.72 | 2.02 | 0.06 | |
ASD Case | TD Control | Val/Val | 1.68 | 2.30 | 0.02 | 1.49 | 1.92 | 0.01 | ||
GSTT1 | Recessive ⸸ | ASD Case | TD Control | DD | 1.84 | 2.29 | 0.09 | 1.60 | 1.99 | 0.09 |
ASD Case | TD Control | I/I or I/D | 1.72 | 2.26 | <0.01 | 1.61 | 1.91 | 0.01 | ||
GSTM1 | Recessive ‡ | ASD Case | TD Control | DD | 1.67 | 2.31 | 0.01 | 1.58 | 1.81 | 0.28 |
ASD Case | TD Control | I/I or I/D | 1.78 | 2.26 | <0.01 | 1.71 | 2.04 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahbar, M.H.; Samms-Vaughan, M.; Kim, S.; Saroukhani, S.; Bressler, J.; Hessabi, M.; Grove, M.L.; Shakspeare-Pellington, S.; Loveland, K.A. Detoxification Role of Metabolic Glutathione S-Transferase (GST) Genes in Blood Lead Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Genes 2022, 13, 975. https://doi.org/10.3390/genes13060975
Rahbar MH, Samms-Vaughan M, Kim S, Saroukhani S, Bressler J, Hessabi M, Grove ML, Shakspeare-Pellington S, Loveland KA. Detoxification Role of Metabolic Glutathione S-Transferase (GST) Genes in Blood Lead Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Genes. 2022; 13(6):975. https://doi.org/10.3390/genes13060975
Chicago/Turabian StyleRahbar, Mohammad H., Maureen Samms-Vaughan, Sori Kim, Sepideh Saroukhani, Jan Bressler, Manouchehr Hessabi, Megan L. Grove, Sydonnie Shakspeare-Pellington, and Katherine A. Loveland. 2022. "Detoxification Role of Metabolic Glutathione S-Transferase (GST) Genes in Blood Lead Concentrations of Jamaican Children with and without Autism Spectrum Disorder" Genes 13, no. 6: 975. https://doi.org/10.3390/genes13060975
APA StyleRahbar, M. H., Samms-Vaughan, M., Kim, S., Saroukhani, S., Bressler, J., Hessabi, M., Grove, M. L., Shakspeare-Pellington, S., & Loveland, K. A. (2022). Detoxification Role of Metabolic Glutathione S-Transferase (GST) Genes in Blood Lead Concentrations of Jamaican Children with and without Autism Spectrum Disorder. Genes, 13(6), 975. https://doi.org/10.3390/genes13060975