Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hippocampal RNA Extraction and Sequencing
2.2. RNA Sequence Mapping and Differential Expression Analysis
2.3. Functional Enrichment, Network Inference and Transcriptional Factor Analysis
3. Results
3.1. Hippocampal Gene Expression Profiles
3.2. The Effects of Weaning, Maternal Immune Activation and Sex on Hippocampal Pathways
3.3. The Effects of Weaning, Maternal Immune Activation and Sex on Gene Expression Profiles
3.4. The Effects of Weaning, Maternal Immune Activation and Sex on Gene Networks in the Hippocampus
4. Discussion
4.1. Hippocampal Pathways and Genes Affected by Maternal Immune Activation, Weaning and Sex Interactions
4.1.1. Enrichment of Immunological and Neurological Pathways
4.1.2. Enrichment of Nervous System Pathways
4.1.3. Enrichment of Metabolic Pathways
4.2. Hippocampal Gene Networks Affected by Maternal Immune Activation, Weaning and Sex Interactions
4.2.1. Terpenoid Backbone Biosynthesis Pathway
4.2.2. Addiction Pathways
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crawley, J.N.; Heyer, W.D.; LaSalle, J.M. Autism and cancer share risk genes, pathways, and drug targets. Trends Genet. 2016, 32, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Pié, S.; Lallès, J.P.; Blazy, F.; Laffitte, J.; Sève, B.; Oswald, I.P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. J. Nutr. 2004, 134, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firouzabadi, S.G.; Kariminejad, R.; Vameghi, R.; Darvish, H.; Ghaedi, H.; Banihashemi, S.; Firouzkouhi Moghaddam, M.; Jamali, P.; Mofidi Tehrani, H.F.; Dehghani, H.; et al. Copy number variants in patients with autism and additional clinical features: Report of VIPR2 duplication and a novel microduplication syndrome. Mol. Neurobiol. 2017, 54, 7019–7027. [Google Scholar] [CrossRef]
- Kikusui, T.; Mori, Y. Behavioural and neurochemical consequences of early weaning in rodents. J. Neuroendocrinol. 2009, 21, 427–431. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, K.D.S.; Klein, C.P.; August, P.M.; Dos Santos, B.G.; Hözer, R.M.; Maurmann, R.M.; Scortegagna, M.C.; Hoppe, J.B.; Matté, C. Early weaning alters redox status in the hippocampus and hypothalamus of rat pups. Int. J. Dev. Neurosci. 2020, 80, 512–527. [Google Scholar] [CrossRef] [PubMed]
- Poletto, R.; Steibel, J.P.; Siegford, J.M.; Zanella, A.J. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets. Brain Res. 2006, 1067, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Maynard, T.M.; Sikich, L.; Lieberman, J.A.; LaMantia, A.S. Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr. Bull. 2001, 27, 457–476. [Google Scholar] [CrossRef] [Green Version]
- Mattei, D.; Ivanov, A.; Ferrai, C.; Jordan, P.; Guneykaya, D.; Buonfiglioli, A.; Schaafsma, W.; Przanowski, P.; Deuther-Conrad, W.; Brust, P.; et al. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry 2017, 7, e1120. [Google Scholar] [CrossRef]
- Knuesel, I.; Chicha, L.; Britschgi, M.; Schobel, S.A.; Bodmer, M.; Hellings, J.A.; Toovey, S.; Prinssen, E.P. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 2014, 10, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Canetta, S.; Bolkan, S.; Padilla-Coreano, N.; Song, L.J.; Sahn, R.; Harrison, N.L.; Gordon, J.A.; Brown, A.; Kellendonk, C. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol. Psychiatry 2016, 21, 956–968. [Google Scholar] [CrossRef]
- Walker, A.K.; Nakamura, T.; Byrne, R.J.; Naicker, S.; Tynan, R.J.; Hunter, M.; Hodgson, D.M. Neonatal lipopolysaccharide and adult stress exposure predisposes rats to anxiety-like behaviour and blunted corticosterone responses: Implications for the double-hit hypothesis. Psychoneuroendocrinology 2009, 34, 1515–1525. [Google Scholar] [CrossRef]
- Imanaka, A.; Morinobu, S.; Toki, S.; Yamawaki, S. Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav. Brain Res. 2006, 173, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Giovanoli, S.; Engler, H.; Engler, A.; Richetto, J.; Voget, M.; Willi, R.; Winter, C.; Riva, M.A.; Mortensen, P.B.; Feldon, J.; et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 2013, 339, 1095–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Hagberg, H.; Nie, C.; Zhu, C.; Ikeda, T.; Mallard, C. Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J. Neuropathol. Exp. Neurol. 2007, 66, 552–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayer, T.A.; Falkai, P.; Maier, W. Genetic and non-genetic vulnerability factors in schizophrenia: The basis of the “two hit hypothesis”. J. Psychiatr. Res. 1999, 33, 543–548. [Google Scholar] [CrossRef]
- Southey, B.R.; Zhang, P.; Keever, M.R.; Rymut, H.E.; Johnson, R.W.; Sweedler, J.V.; Rodriguez-Zas, S.L. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J. Integr. Neurosci. 2021, 20, 21–31. [Google Scholar] [CrossRef]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Bender, D.E.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. Biochemistry and immune biomarkers indicate interacting effects of pre- and postnatal stressors in pigs across sexes. Animals 2021, 11, 987. [Google Scholar] [CrossRef]
- Rymut, H.E.; Bolt, C.R.; Caputo, M.P.; Houser, A.K.; Antonson, A.M.; Zimmerman, J.D.; Villamil, M.B.; Southey, B.R.; Rund, L.A.; Johnson, R.W.; et al. Long-lasting impact of maternal immune activation and interaction with a second immune challenge on pig behavior. Front. Vet. Sci. 2020, 7, 977. [Google Scholar] [CrossRef]
- Keever-Keigher, M.R.; Zhang, P.; Bolt, C.R.; Rymut, H.E.; Antonson, A.M.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Interacting impact of maternal inflammatory response and stress on the amygdala transcriptome of pigs. G3 2021, 11, jkab113. [Google Scholar] [CrossRef] [PubMed]
- Keever, M.R.; Zhang, P.; Bolt, C.R.; Antonson, A.M.; Rymut, H.E.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Lasting and sex-dependent impact of maternal immune activation on molecular pathways of the amygdala. Front. Neurosci. 2020, 14, 774. [Google Scholar] [CrossRef]
- Rymut, H.E.; Rund, L.A.; Bolt, C.R.; Villamil, M.B.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. The combined effect of weaning stress and immune activation during pig gestation on serum cytokine and analyte concentrations. Animals 2021, 11, 2274. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.S.; Dhikav, V. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol. 2012, 15, 239–246. [Google Scholar] [CrossRef]
- Andrews, S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 1 January 2022).
- Pruitt, K.D.; Tatusova, T.; Maglott, D.R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007, 35, D61–D65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.J.; Weiss, S.T. Chapter 17-Epidemiologic and Population Genetic Studies. In Clinical and Translational Science, 2nd ed.; Robertson, D., Williams, G.H., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 313–326. [Google Scholar]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Needleman, L.A.; McAllister, A.K. The major histocompatibility complex and autism spectrum disorder. Dev. Neurobiol. 2012, 72, 1288–1301. [Google Scholar] [CrossRef] [PubMed]
- Luan, R.; Cheng, H.; Li, L.; Zhao, Q.; Liu, H.; Wu, Z.; Zhao, L.; Yang, J.; Hao, J.; Yin, Z. Maternal lipopolysaccharide exposure promotes immunological functional changes in adult offspring CD4+ T Cells. Am. J. Reprod. Immunol. 2015, 73, 522–535. [Google Scholar] [CrossRef] [PubMed]
- Frost, E.L.; Johanson, D.M.; Lammert, C.R.; Bellinger, C.E.; Hurt, M.E.; Wall, M.K.; Bolte, A.C.; Ennerfelt, H.E.; Zunder, E.R.; Lukens, J. Sex bias in maternal immune activation-induced neurodevelopmental disorder begins at the placenta. CellPress 2020, 79, 13. [Google Scholar] [CrossRef]
- Miller, G.E.; Borders, A.E.; Crockett, A.H.; Ross, K.M.; Qadir, S.; Keenan-Devlin, L.; Leigh, A.K.; Ham, P.; Ma, J.; Arevalo, J.M.G.; et al. Maternal socioeconomic disadvantage is associated with transcriptional indications of greater immune activation and slower tissue maturation in placental biopsies and newborn cord blood. Brain Behav. Immun. 2017, 64, 276–284. [Google Scholar] [CrossRef]
- Kalish, B.T.; Kim, E.; Finander, B.; Duffy, E.E.; Kim, H.; Gilman, C.K.; Yim, Y.S.; Tong, L.; Kaufman, R.J.; Griffith, E.C.; et al. Maternal immune activation in mice disrupts proteostasis in the fetal brain. Nat. Neurosci. 2021, 24, 204–213. [Google Scholar] [CrossRef]
- Rothwell, P.E. Autism spectrum disorders and drug addiction: Common pathways, common molecules, distinct disorders? Front. Neurosci. 2016, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, A.; Dumon, C.; Guimond, D.; Tyzio, R.; Bonifazi, P.; Lozovaya, N.; Burnashev, N.; Ferrari, D.C.; Ben-Ari, Y. The GABA developmental shift is abolished by maternal immune activation already at birth. Cereb. Cortex 2018, 29, 3982–3992. [Google Scholar] [CrossRef]
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014, 343, 675–679. [Google Scholar] [CrossRef]
- Wegrzyn, D.; Manitz, M.P.; Kostka, M.; Freund, N.; Juckel, G.; Faissner, A. Poly I:C-induced maternal immune challenge reduces perineuronal net area and raises spontaneous network activity of hippocampal neurons in vitro. Eur. J. Neurosci. 2021, 53, 3920–3941. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-L.; Adams, C.E.; Stevens, K.E.; Chow, K.-H.; Freedman, R.; Patterson, P.H. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring. Brain Behav. Immun. 2015, 46, 192–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, F.S.; Scarborough, J.; Schalbetter, S.M.; Richetto, J.; Kim, E.; Couch, A.; Yee, Y.; Lerch, J.P.; Vernon, A.C.; Weber-Stadlbauer, U.; et al. Behavioral, neuroanatomical, and molecular correlates of resilience and susceptibility to maternal immune activation. Mol. Psychiatry 2021, 26, 396–410. [Google Scholar] [CrossRef] [PubMed]
- Zech, M.; Kopajtich, R.; Steinbrücker, K.; Bris, C.; Gueguen, N.; Feichtinger, R.G.; Achleitner, M.T.; Duzkale, N.; Périvier, M.; Koch, J.; et al. Variants in mitochondrial ATP synthase cause variable neurologic phenotypes. Ann. Neurol. 2022, 91, 225–237. [Google Scholar] [CrossRef]
- Deb, S.; Phukan, B.C.; Dutta, A.; Paul, R.; Bhattacharya, P.; Manivasagam, T.; Thenmozhi, A.J.; Babu, C.S.; Essa, M.M.; Borah, A. Natural products and their therapeutic effect on autism spectrum disorder. In Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management; Essa, M.M., Qoronfleh, M.W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 601–614. [Google Scholar]
- Zhao, L.H.; Ding, Y.X.; Zhang, L.; Li, L. Cornel iridoid glycoside improves memory ability and promotes neuronal survival in fimbria-fornix transected rats. Eur. J. Pharmacol. 2010, 647, 68–74. [Google Scholar] [CrossRef]
- Shukla, S.K.; Liu, W.; Sikder, K.; Addya, S.; Sarkar, A.; Wei, Y.; Rafiq, K. HMGCS2 is a key ketogenic enzyme potentially involved in type 1 diabetes with high cardiovascular risk. Sci. Rep. 2017, 7, 4590. [Google Scholar] [CrossRef]
- Lei, E.; Vacy, K.; Boon, W.C. Fatty acids and their therapeutic potential in neurological disorders. Neurochem. Int. 2016, 95, 75–84. [Google Scholar] [CrossRef]
- Borçoi, A.R.; Patti, C.L.; Zanin, K.A.; Hollais, A.W.; Santos-Baldaia, R.; Ceccon, L.M.B.; Berro, L.F.; Wuo-Silva, R.; Grapiglia, S.B.; Ribeiro, L.T.C.; et al. Effects of prenatal immune activation on amphetamine-induced addictive behaviors: Contributions from animal models. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 63, 63–69. [Google Scholar] [CrossRef]
- Capellán, R.; Orihuel, J.; Marcos, A.; Ucha, M.; Moreno-Fernández, M.; Casquero-Veiga, M.; Soto-Montenegro, M.L.; Desco, M.; Oteo-Vives, M.; Ibáñez-Moragues, M.; et al. Additive, synergic and antagonistic interactions between maternal immune activation and peripubertal stress in cocaine addiction-like behaviour, morphofunctional brain parameters and striatal transcriptome. bioRxiv 2021. [Google Scholar] [CrossRef]
- Yang, H.-C.; Chen, I.C.; Tsay, Y.-C.; Li, Z.-R.; Chen, C.-H.; Hwu, H.-G.; Chen, C.-H. Using an event-history with risk-free model to study the genetics of alcoholism. Sci. Rep. 2017, 7, 1975. [Google Scholar] [CrossRef] [Green Version]
- Nazarian, A.; Sun, W.-L.; Zhou, L.; Kemen, L.M.; Jenab, S.; Quinones-Jenab, V. Sex differences in basal and cocaine-induced alterations in PKA and CREB proteins in the nucleus accumbens. Psychopharmacology 2008, 203, 641. [Google Scholar] [CrossRef] [PubMed]
KEGG Pathway 1 | MxS | M 2 | S | WxM | W | |||||
---|---|---|---|---|---|---|---|---|---|---|
N 3 | FDR | N | FDR | N | FDR | N | FDR | N | FDR | |
Metabolism | ||||||||||
Terpenoid backb. | 2.0 | 3 × 10−4 | 1.9 | 4 × 10−2 | −1.7 | 5 × 10−2 | −2.0 | 5 × 10−3 | ||
Oxidative phosph. | 1.9 | 3 × 10−2 | −1.7 | 3 × 10−2 | ||||||
Nervous system | ||||||||||
Dopaminer synap. | −1.8 | 2 × 10−2 | −1.8 | 4 × 10−2 | ||||||
Nicotine addiction | −1.8 | 4 × 10−2 | ||||||||
Cocaine addict. | −1.9 | 1 × 10−2 | −2.0 | 7 × 10−3 | ||||||
Morphine addict. | −1.8 | 4 × 10−2 | −2.1 | 1 × 10−6 | ||||||
GABAergic synap. | −1.9 | 2 × 10−2 | ||||||||
Cholinergic synap. | −1.8 | 5 × 10−2 | ||||||||
Immune system | ||||||||||
Allograft rejection | 2.2 | 1 × 10−6 | −2.4 | 1 × 10−6 | 2.4 | 1 × 10−6 | −1.8 | 7 × 10−3 | ||
Antigen processing | 2.6 | 1 × 10−6 | −2.7 | 1 × 10−6 | 2.6 | 1 × 10−6 | −2.1 | 4 × 10−3 | ||
Asthma | 2.0 | 3 × 10−4 | −2.2 | 2 × 10−4 | 2.2 | 1 × 10−4 | −1.8 | 5 × 10−3 | ||
Autoimm. thyroid | 2.2 | 1 × 10−6 | −2.3 | 1 × 10−6 | 2.5 | 1 × 10−6 | −1.8 | 5 × 10−3 | ||
Herpes infection | 2.4 | 1 × 10−6 | 2.1 | 3 × 10−3 | ||||||
Staphyloco. infect. | 2.2 | 1 × 10−6 | −2.6 | 1 × 10−6 | 2.4 | 1 × 10−6 | −2.4 | 1 × 10−6 | ||
Systemic lupus. | 2.1 | 1 × 10−6 | −2.1 | 2 × 10−4 | 1.9 | 1 × 10−2 | −1.9 | 2 × 10−2 | ||
Rheumatoid arthr. | 2.0 | 4 × 10−4 | −2.1 | 3 × 10−3 | 2.2 | 1 × 10−6 | −1.9 | 2 × 10−2 | ||
Graft-versus-host | 2.3 | 1 × 10−6 | −2.4 | 1 × 10−6 | 2.3 | 1 × 10−6 |
Gene Symbol | MxS 1 | WxM | M | S | W | |||
---|---|---|---|---|---|---|---|---|
FDR | FDR | LogFC | FDR | LogFC | FDR | LogFC | FDR | |
Metabolic pathway | ||||||||
ATP6V1C2 | 5 × 10−3 | 1.68 | 4 × 10−5 | |||||
HMGCS2 | 4 × 10−2 | −1.38 | 1 × 10−2 | |||||
Nervous system pathway | ||||||||
ADCY5 | 8 × 10−4 | |||||||
CAMK4 | −1.30 | 1 × 10−3 | ||||||
CHRM4 | −1.28 | 2 × 10−3 | ||||||
DRD1 | 6 × 10−45 | −3.96 | 3 × 10−29 | |||||
DRD2 | 7 × 10−81 | −4.37 | 3 × 10−34 | |||||
DRD3 | 4 × 10−16 | −2.53 | 5 × 10−12 | |||||
GABRA4 | 5 × 10−2 | −1.25 | 3 × 10−3 | |||||
GAD2 | −1.53 | 7 × 10−5 | ||||||
GNAL | 4 × 10−15 | −1.75 | 2 × 10−6 | |||||
GNG7 | 2 × 10−4 | |||||||
GRK5 | 8 × 10−3 | |||||||
PDE10A | 2 × 10−6 | −1.73 | 4 × 10−6 | |||||
PDE1B | 2 × 10−15 | −2.10 | 5 × 10−9 | |||||
PDE7B | 2 × 10−7 | −1.56 | 5 × 10−5 | |||||
PDE8B | 7 × 10−3 | −1.43 | 2 × 10−4 | |||||
PPP1R1B | 5 × 10−47 | −3.15 | 1 × 10−19 | |||||
RGS9 | 8 × 10−30 | −2.63 | 7 × 10−14 | |||||
SLC17A6 | −1.51 | 1 × 10−4 | ||||||
SLC32A1 | 4 × 10−5 | |||||||
SLC5A7 | −2.12 | 1 × 10−8 | ||||||
Immune system pathway | ||||||||
CCL2 | 9 × 10−4 | |||||||
CD74 | 9 × 10−6 | 5 × 10−3 | ||||||
CTSL | 1 × 10−9 | 9 × 10−3 | −1.57 | 4 × 10−4 | −1.63 | 4 × 10−4 | ||
DDX58 | 4 × 10−2 | |||||||
SLA-5 | 4 × 10−4 | |||||||
SLA-DMA | 2 × 10−2 | |||||||
SLA-DQA1 | 2 × 10−7 | 8 × 10−5 | −1.57 | 1 × 10−4 | ||||
SLA-DQB1 | 4 × 10−4 | |||||||
SLA-DRA | 3 × 10−8 | 2 × 10−4 | −1.45 | 1 × 10−3 | −1.68 | 3 × 10−4 | ||
SLA-DRB1 | 9 × 10−7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rymut, H.E.; Rund, L.A.; Southey, B.R.; Johnson, R.W.; Rodriguez-Zas, S.L. Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors. Genes 2022, 13, 814. https://doi.org/10.3390/genes13050814
Rymut HE, Rund LA, Southey BR, Johnson RW, Rodriguez-Zas SL. Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors. Genes. 2022; 13(5):814. https://doi.org/10.3390/genes13050814
Chicago/Turabian StyleRymut, Haley E., Laurie A. Rund, Bruce R. Southey, Rodney W. Johnson, and Sandra L. Rodriguez-Zas. 2022. "Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors" Genes 13, no. 5: 814. https://doi.org/10.3390/genes13050814
APA StyleRymut, H. E., Rund, L. A., Southey, B. R., Johnson, R. W., & Rodriguez-Zas, S. L. (2022). Terpenoid Backbone Biosynthesis among Pig Hippocampal Pathways Impacted by Stressors. Genes, 13(5), 814. https://doi.org/10.3390/genes13050814