Two Novel Variants of WDR26 in Chinese Patients with Intellectual Disability
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Genetic Studies and Variant Assessment
3. Results
3.1. Clinical Features of Case 1
3.2. Clinical Features of Case 2
3.3. Genetic Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skraban, C.M.; Wells, C.F.; Markose, P.; Cho, M.T.; Nesbitt, A.I.; Au, P.Y.B.; Begtrup, A.; Bernat, J.A.; Bird, L.M.; Cao, K.; et al. WDR26 Haploinsufficiency Causes a Recognizable Syndrome of Intellectual Disability, Seizures, Abnormal Gait, and Distinctive Facial Features. Am. J. Hum. Genet. 2017, 101, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Yanagishita, T.; Yamamoto-Shimojima, K.; Nakano, S.; Sasaki, T.; Shigematsu, H.; Imai, K.; Yamamoto, T. Phenotypic features of 1q41q42 microdeletion including WDR26 and FBXO28 are clinically recognizable: The first case from Japan. Brain Dev. 2019, 41, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, Y.; Wei, X.; Yuan, C.; Yuan, X.; Xiao, X. A novel WD-40 repeat protein WDR26 suppresses H2O2-induced cell death in neural cells. Neurosci. Lett. 2009, 460, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Zhen, R.; Moo, C.; Zhao, Z.; Chen, M.; Feng, H.; Zheng, X.; Zhang, L.; Shi, J.; Chen, C. Wdr26 regulates nuclear condensation in developing erythroblasts. Blood 2020, 135, 208–219. [Google Scholar] [CrossRef]
- Cospain, A.; Schaefer, E.; Faoucher, M.; Dubourg, C.; Carré, W.; Bizaoui, V.; Assoumani, J.; Van Maldergem, L.; Piton, A.; Gérard, B.; et al. Skraban-Deardorff syndrome: Six new cases of WDR26-related disease and expansion of the clinical phenotype. Clin. Genet. 2021, 99, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Pavinato, L.; Trajkova, S.; Grosso, E.; Giorgio, E.; Bruselles, A.; Radio, F.C.; Pippucci, T.; Dimartino, P.; Tartaglia, M.; Petlichkovski, A.; et al. Expanding the clinical phenotype of the ultra-rare Skraban-Deardorff syndrome: Two novel individuals with WDR26 loss-of-function variants and a literature review. Am. J. Med. Genet. A 2021, 185, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Iossifov, I.; O’Roak, B.J.; Sanders, S.J.; Ronemus, M.; Krumm, N.; Levy, D.; Stessman, H.A.; Witherspoon, K.T.; Vives, L.; Patterson, K.E.; et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 2014, 515, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Q.; Sun, H.; Zhang, H.; Wang, R.; Li, S.; Sun, D.; Yang, X.A.; Jin, Y. The combination of whole-exome sequencing and copy number variation sequencing enables the diagnosis of rare neurological disorders. Clin. Genet. 2019, 96, 140–150. [Google Scholar] [CrossRef]
- Takata, A.; Miyake, N.; Tsurusaki, Y.; Fukai, R.; Miyatake, S.; Koshimizu, E.; Kushima, I.; Okada, T.; Morikawa, M.; Uno, Y.; et al. Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder. Cell Rep. 2018, 22, 734–747. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, G.; Luo, J.; Fang, D.; Yu, Y.; Wang, X.; Chen, J.; Qiu, W. Mutations in methionyl-tRNA synthetase gene in a Chinese family with interstitial lung and liver disease, postnatal growth failure and anemia. J. Hum. Genet. 2017, 62, 647–651. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, X.; Fan, Y.; Wang, L.; Luo, X.; Liu, H.; Gao, X.; Gong, Z.; Wang, Y.; Qiu, W.; et al. High Detection Rate of Copy Number Variations Using Capture Sequencing Data: A Retrospective Study. Clin. Chem. 2020, 66, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Northcott, P.A.; Shih, D.J.; Remke, M.; Cho, Y.J.; Kool, M.; Hawkins, C.; Eberhart, C.G.; Dubuc, A.; Guettouche, T.; Cardentey, Y.; et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 2012, 123, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Liu, Y.; Cai, W.; Ma, J.; Ni, K.; Chen, M.; Wang, C.; Liu, Y.; Zhu, Y.; Liu, Z.; et al. Detection of Disease-Causing SNVs/Indels and CNVs in Single Test Based on Whole Exome Sequencing: A Retrospective Case Study in Epileptic Encephalopathies. Front. Pediatr. 2021, 9, 635703. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Theisen, A.; Bejjani, B.A.; Ballif, B.C.; Aylsworth, A.S.; Lim, C.; McDonald, M.; Ellison, J.W.; Kostiner, D.; Saitta, S.; et al. The discovery of microdeletion syndromes in the post-genomic era: Review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. Genet. Med. 2007, 9, 607–616. [Google Scholar] [CrossRef]
- Au, P.Y.; Argiropoulos, B.; Parboosingh, J.S.; Micheil Innes, A. Refinement of the critical region of 1q41q42 microdeletion syndrome identifies FBXO28 as a candidate causative gene for intellectual disability and seizures. Am. J. Med. Genet. A 2014, 164a, 441–448. [Google Scholar] [CrossRef]
- Cassina, M.; Rigon, C.; Casarin, A.; Vicenzi, V.; Salviati, L.; Clementi, M. FBXO28 is a critical gene of the 1q41q42 microdeletion syndrome. Am. J. Med. Genet. A 2015, 167, 1418–1420. [Google Scholar] [CrossRef]
- Chen, C.P.; Chern, S.R.; Wu, P.S.; Chen, S.W.; Wu, F.T.; Wang, W. Molecular cytogenetic characterization of a de novo chromosome 1q41-q42.11 microdeletion of paternal origin in a 15-year-old boy with mental retardation, developmental delay, autism and congenital heart defects. Taiwan J. Obstet. Gynecol. 2021, 60, 341–344. [Google Scholar] [CrossRef]
- Christensen, R.D.; Yaish, H.M. A neonate with the Pelger-Huët anomaly, cleft lip and palate, and agenesis of the corpus callosum, with a chromosomal microdeletion involving 1q41 to 1q42.12. J. Perinatol. 2012, 32, 238–240. [Google Scholar] [CrossRef][Green Version]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef]
- He, J.; Xie, Y.; Kong, S.; Qiu, W.; Wang, X.; Wang, D.; Sun, X.; Sun, D. Psychomotor retardation with a 1q42.11-q42.12 deletion. Hereditas 2017, 154, 6. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kantarci, S.; Ackerman, K.G.; Russell, M.K.; Longoni, M.; Sougnez, C.; Noonan, K.M.; Hatchwell, E.; Zhang, X.; Pieretti Vanmarcke, R.; Anyane-Yeboa, K.; et al. Characterization of the chromosome 1q41q42.12 region, and the candidate gene DISP1, in patients with CDH. Am. J. Med. Genet. A 2010, 152a, 2493–2504. [Google Scholar] [CrossRef] [PubMed]
- Mazzeu, J.F.; Vianna-Morgante, A.M.; Krepischi, A.C.; Oudakker, A.; Rosenberg, C.; Szuhai, K.; McGill, J.; Maccraughan, J.; van Bokhoven, H.; Brunner, H.G. Deletions encompassing 1q41q42.1 and clinical features of autosomal dominant Robinow syndrome. Clin. Genet. 2010, 77, 404–407. [Google Scholar] [CrossRef]
- Rice, G.M.; Qi, Z.; Selzer, R.; Richmond, T.; Thompson, K.; Pauli, R.M.; Yu, J. Microdissection-based high-resolution genomic array analysis of two patients with cytogenetically identical interstitial deletions of chromosome 1q but distinct clinical phenotypes. Am. J. Med. Genet. A 2006, 140, 1637–1643. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.A.; Lacassie, Y.; El-Khechen, D.; Escobar, L.F.; Reggin, J.; Heuer, C.; Chen, E.; Jenkins, L.S.; Collins, A.T.; Zinner, S.; et al. New cases and refinement of the critical region in the 1q41q42 microdeletion syndrome. Eur. J. Med. Genet. 2011, 54, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Slavotinek, A.M.; Moshrefi, A.; Lopez Jiminez, N.; Chao, R.; Mendell, A.; Shaw, G.M.; Pennacchio, L.A.; Bates, M.D. Sequence variants in the HLX gene at chromosome 1q41-1q42 in patients with diaphragmatic hernia. Clin. Genet. 2009, 75, 429–439. [Google Scholar] [CrossRef]
- Spreiz, A.; Haberlandt, E.; Baumann, M.; Baumgartner Sigl, S.; Fauth, C.; Gautsch, K.; Karall, D.; Janetschek, C.; Rostasy, K.; Scholl-Bürgi, S.; et al. Chromosomal microaberrations in patients with epilepsy, intellectual disability, and congenital anomalies. Clin. Genet. 2014, 86, 361–366. [Google Scholar] [CrossRef]
- Wat, M.J.; Veenma, D.; Hogue, J.; Holder, A.M.; Yu, Z.; Wat, J.J.; Hanchard, N.; Shchelochkov, O.A.; Fernandes, C.J.; Johnson, A.; et al. Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia. J. Med. Genet. 2011, 48, 299–307. [Google Scholar] [CrossRef]
Features | Patient 1 | Patient 2 | WDR26 Variants [1,5,6] (n = 23) | Chromosome 1q41–q42 Deletion Syndrome [1,2,11,12,13,14,15,16,17,18,19,20,21,22,23,24] (n = 29) |
---|---|---|---|---|
Developmental delay or intellectual disability (ID) | + | + | 23/23 | 27/27 |
Limited speech | + | + | 23/23 | 8/8 |
Seizures | – | – | 22/23 | 17/27 |
CNS structural anomalies | + | + | 15/22 | 18/24 |
Hypotonia | + | + | 14/20 | 9/21 |
Abnormal gait | + | + | 14/17 | 3/16 |
Happy and/or friendly personality | + | + | 18/19 | 4/4 |
Autistic and/or repetitive behaviors or posturing | + | – | 11/17 | 3/3 |
Facial features | ||||
Coarse facial features | + | + | 15/23 | 18/22 |
Full cheeks as a child Large irises or rounded/short/slanting palpebral fissures | – + (rounded) | + + (rounded) | 18/21 15/23 (rounded) | 9/10 7/12 (slanting) |
Abnormal eyebrows | – | – | 11/23 | 6/13 |
Depressed nasal root | + | + | 12/23 | 18/22 |
Anteverted nares | + | – | 15/23 | 12/16 |
Full nasal tip | + | + | 19/23 | 14/20 |
Prominent maxilla | – | – | 16/23 | 10/17 |
Protruding or full, tented upper lip | – | – | 16/23 | 13/18 |
Wide mouth | + | – | 12/17 | 8/17 |
Decreased cupid’s bow | + | – | 11/23 | 12/15 |
Widely spaced teeth | + | – | 18/21 | 9/10 |
Abnormal gums | + | + | 13/19 | 8/9 |
Hypertelorism | – | + | 5/15 | 13/21 |
Ophthalmologic abnormalities | – | – | 10/17 | 3/8 |
Nail hypoplasia | – | – | 3/13 | 6/6 |
Short stature | – | – | 3/21 | 5/19 |
Digit abnormalities | – | – | 5/14 | 8/10 |
GI difficulties | + | – | 11/16 | 7/8 |
Orthopaedic disorders | – | – | 13/17 | 15/15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Xu, M.; Zhu, X.; Zhang, Y. Two Novel Variants of WDR26 in Chinese Patients with Intellectual Disability. Genes 2022, 13, 813. https://doi.org/10.3390/genes13050813
Hu J, Xu M, Zhu X, Zhang Y. Two Novel Variants of WDR26 in Chinese Patients with Intellectual Disability. Genes. 2022; 13(5):813. https://doi.org/10.3390/genes13050813
Chicago/Turabian StyleHu, Jiacheng, Mingming Xu, Xiaobo Zhu, and Yu Zhang. 2022. "Two Novel Variants of WDR26 in Chinese Patients with Intellectual Disability" Genes 13, no. 5: 813. https://doi.org/10.3390/genes13050813
APA StyleHu, J., Xu, M., Zhu, X., & Zhang, Y. (2022). Two Novel Variants of WDR26 in Chinese Patients with Intellectual Disability. Genes, 13(5), 813. https://doi.org/10.3390/genes13050813