Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Sampling, DNA Isolation, and Plastome Sequencing, Assembly and Annotation
2.2. Comparative Plastome Analysis
2.3. Phylogenetic Analysis
3. Results
3.1. Chloroplast Genome Size and Features
3.2. Codon Usage
3.3. Comparative Analysis of Chloroplast Genome Structure
3.4. Identification of Genes under Positive Selection
3.5. Phylogenetic Analysis
4. Discussion
4.1. Chloroplast Genome Structure and Evolution in Genus Cotoneaster
4.2. The Codon Usage Pattern in the Cotoneaster Chloroplast Genome
4.3. The Characteristic of RNA Editing Sites in the Cotoneaster Chloroplast Genome
4.4. Positively Selected Genes in Cotoneaster Chloroplast Genomes
4.5. Phylogenetic Position of Cotoneaster wilsonii on Ulleung Island
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fryer, J.; Hylmö, B. Cotoneasters: A Comprehensive Guide to Shrubs for Flowers, Fruit, and Foliage; Timber Press: Portland, OR, USA, 2009; pp. 1–344. [Google Scholar]
- Li, F.; Fan, Q.; Li, Q.; Chen, S.; Guo, W.; Cui, D.L.; Liao, W. Molecular phylogeny of Cotoneaster (Rosaceae) inferred from nuclear ITS and multiple chloroplast sequences. Plant Syst. Evol. 2014, 300, 1533–1546. [Google Scholar] [CrossRef]
- Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Meng, K.-K.; Chen, S.-F.; Xu, K.-W.; Zhou, R.-C.; Li, M.-W.; Dhamala, M.K.; Liao, W.B.; Fan, Q. Phylogenomic analyses based on genome-skimming data reveal cyto-nuclear discordance in the evolutionary history of Cotoneaster (Rosaceae). Mol. Phylogenetics Evol. 2021, 158, 107083. [Google Scholar] [CrossRef] [PubMed]
- Yü, T.T.; Lu, L.D.; Ku, T.C. Rosaceae. In Flora Reipublicae Popularis Sinicae; Yü, T.T., Ed.; Science Press: Beijing, China, 1974; Volume 36, pp. 107–178. [Google Scholar]
- Willis, J.C. A Dictionary of the Flowering Plants and Fern; Cambridge University Press: London, UK, 1985. [Google Scholar]
- Lu, L.; Brach, A.R. Flora of China Vol. 9 (Pittosporaceae through Connaraceae); Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2003; pp. 85–108. [Google Scholar]
- Talent, N.; Dickinson, T.A. Ploidy level increase and decrease in seeds from crosses between sexual diploids and asexual triploids and tetraploids in Crataegus L. (Rosaceae, Spiraeoideae, Pyreae). Can. J. Bot. 2007, 85, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Koehne, E. Deutsche Dendrologie; Verlag von Ferdinand Enke: Sttuttgart, Germany, 1893; pp. 224–227. [Google Scholar]
- Flinck, K.E.; Hylmö, B. A list of series and species in the genus Cotoneaster. Bot. Notiser 1966, 119, 445–463. [Google Scholar]
- Phipps, J.B.; Robertson, K.R.; Smith, P.G.; Rohrer, J.R. A checklist of the subfamily Maloideae (Rosaceae). Can. J. Bot. 1990, 68, 2209–2269. [Google Scholar] [CrossRef]
- Bartish, I.V.; Hylmo, B.; Nybom, H. RAPD analysis of interspecific relationships in presumably apomictic Cotoneaster species. Euphytica 2001, 120, 273–280. [Google Scholar] [CrossRef]
- Zhou, L.H.; Wu, Z.Y. Taxonomic revision on series Buxifolii in genus Cotoneaster (Rosaceae). Acta Bot. Yunn. 2001, 23, 29–36. [Google Scholar]
- Chang, C.-S.; Jeon, J.I. Leaf flavonoids in Cotoneaster wilsonii (Rosaceae) from the island Ulleung-do, Korea. Biochem. Syst. Ecol. 2003, 31, 171–179. [Google Scholar] [CrossRef]
- Lee, T.B. Illustrated Flora of Korea; Hyangmum Co.: Seoul, Korea, 1980. (In Korean) [Google Scholar]
- Kitamura, S.; Murata, G. Colored Illustrations of Woody Plants of Japan; Revised ed.; Hoikusha Pub. Co.: Osaka, Japan, 1984; Volume 1. (In Japanese) [Google Scholar]
- NIBR (National Institute of Biological Resources). Korean Red List of Threatened Species, 2nd ed.; Suh, M.-H., Lee, B.-Y., Kim, S.T., Park, C.-H., Oh, H.-K., Kim, H.-Y., Lee, J.-H., Lee, S.Y., Eds.; Jisunga, Ministry of Environment: Incheon, Korea, 2014; p. 141. [Google Scholar]
- Palmer, J.D. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 1985, 19, 325–354. [Google Scholar] [CrossRef]
- Green, B.R. Chloroplast genomes of photosynthetic eukaryotes. Plant J. 2011, 66, 34–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, L.; Yan, T.L.; Liu, Q. Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species. Gene 2014, 549, 58–69. [Google Scholar] [CrossRef]
- Korpelainen, H. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 2004, 91, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Ravi, V.; Khurana, J.P.; Tyagi, A.K.; Khurana, P. An update on chloroplast genomes. Plant Syst. Evol. 2008, 270, 101–122. [Google Scholar] [CrossRef]
- Fan, W.-B.; Wu, Y.; Yang, J.; Shahzad, K.; Li, Z.-H. Comparative chloroplast genomics of Dipsacales species: Insights into sequence variation, adaptive evolution, and phylogenetic relationships. Front. Plant Sci. 2018, 9, 689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bungard, R.A. Photosynthetic evolution in parasitic plants: Insight from the chloroplast genome. Bioessays 2004, 26, 235–247. [Google Scholar] [CrossRef]
- Hu, S.; Sablok, G.; Wang, B.; Qu, D.; Barbaro, E.; Viola, R.; Li, M.; Varotto, C. Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genom. 2015, 16, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frailey, D.C.; Chaluvadi, S.R.; Vaughn, J.N.; Coatney, C.G.; Bennetzen, J.L. Gene loss and genome rearrangement in the plastids of five hemiparasites in the family Orobanchaceae. BMC Plant Biol. 2018, 18, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.Y.; Pak, J.-H.; Kim, S.-C. The complete plastome sequence of Rubus takesimensis endemic to Ulleung Island, Korea: Insights into molecular evolution of anagenetically derived species in Rubus (Rosaceae). Gene 2018, 668, 221–228. [Google Scholar] [CrossRef]
- Yang, J.Y.; Pak, J.-H.; Kim, S.-C. Chloroplast genome of critically endangered Cotoneaster wilsonii (Rosaceae) endemic to Ulleung Island, Korea. Mitochondrial DNA B Resour. 2019, 4, 3892–3893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.Y.; Takayama, K.; Pak, J.-H.; Kim, S.-C. Comparison of the whole-plastome sequence between the Bonin Islands endemic Rubus boninensis and its close relative, Rubus trifidus (Rosaceae), in the southern Korean peninsula. Genes 2019, 10, 774. [Google Scholar] [CrossRef] [Green Version]
- Jeon, J.H.; Kim, S.-C. Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes 2019, 10, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.-S.; Kim, S.-H.; Yang, J.Y.; Crawford, D.J.; Stuessy, T.F.; Lopez-Sepulveda, P. Plastid phylogenomics of Dendroseris (Cichorieae; Asteraceae): Insights into structural organization and molecular evolution of an endemic lineage from the Juan Fernandez Islands. Front. Plant Sci. 2020, 11, 594272. [Google Scholar] [CrossRef]
- Guo, X.; Liu, C.; Zhang, G.; Su, W.; Landis, J.B.; Zhang, X. The complete plastomes of five hemiparasitic plants (Osyris wightiana, Pyrularia edulis, Santalum album, Viscum liquidambaricolum, and V. ovalifolium): Comparative and evolutionary analyses within Santalales. Front Genet. 2020, 11, 597. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Jo, S.; Cheon, S.-H.; Joo, M.-J.; Hong, J.-R.; Kwak, M. Plastome evolution and phylogeny of Orchidaceae, with 24 new sequences. Front. Plant Sci. 2020, 11, 22. [Google Scholar] [CrossRef]
- Yang, J.Y.; Chiang, Y.-C.; Hsu, T.-W.; Kim, S.-H.; Pak, J.-H.; Kim, S.-C. Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci. Rep. 2021, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Park, S.; Gil, H.-Y.; Pak, J.-H.; Kim, S.-C. Characterization and dynamics of intracellular gene transfer in plastid genomes of Viola (Violaceae) and order Malpighiales. Front. Plant Sci. 2021, 10, 3389. [Google Scholar] [CrossRef]
- Scobeyeva, V.A.; Artyushin, I.V.; Krinitsina, A.A.; Nikitin, P.A.; Antipin, M.I.; Kuptsov, S.V. Gene loss, pseudogenization in plastomes of genus Allium (Amaryllidaceae), and putative selection for adaptation to environmental conditions. Front. Plant Sci. 2021, 12, 674783. [Google Scholar] [CrossRef]
- Shulaev, V.; Sargent, D.J.; Crowhurst, R.N.; Mockler, T.C.; Folkerts, O.; Delcher, A.L. The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 2011, 43, 109–116. [Google Scholar] [CrossRef]
- Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanraman, A. The genome of the domesticated apple (Malus domestica Borkh.). Nat. Genet. 2010, 42, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Saski, C.; Lee, S.B.; Hansen, A.K.; Daniell, H. Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): Evidence for at least two independent transfers of rpl22 to the nucleus. Mol. Biol. Evol. 2011, 28, 835–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.-S.; Yang, J.Y.; Kim, S.-C. Complete chloroplast genome of Ulleung Island endemic flowering cherry, Prunus takesimensis (Rosaceae), in Korea. Mitochondrial DNA B Resour. 2018, 3, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Terakami, S.; Matsumura, Y.; Kurita, K.; Kanamori, H.; Katayose, Y.; Yamamoto, T. Complete sequence of the chloroplast genome from pear (Pyrus pyrifoliae): Genome structure and comparative analysis. Tree Genet. Genomes 2012, 8, 841–854. [Google Scholar] [CrossRef]
- Yang, J.Y.; Pak, J.-H.; Kim, S.-C. The complete chloroplast genome sequence of Korean raspberry Rubus crataegifolius (Rosaceae). Mitochondrial DNA B Resour. 2017, 2, 793–794. [Google Scholar] [CrossRef] [Green Version]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 8, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. Organellar genome DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [Green Version]
- Brundo, M.; Malde, S.; Poliakov, A.; Do, C.B.; Couronne, O.; Dubchak, I. Global alignment: Finding rearrangements during alignment. Bioinformatics (19S1) 2003, 19, i54–i62. [Google Scholar] [CrossRef] [Green Version]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software v7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, P.M.; Li, W.H. The codon adaptation index-A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozak, M. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 1983, 47, 1–45. [Google Scholar] [CrossRef]
- Mower, J.P. The PREP suite: Predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009, 37, W253–W259. [Google Scholar] [CrossRef]
- Gao, F.; Chen, C.; Arab, D.A.; Du, Z.; He, Y.; Ho, S.Y.W. EasyCodeML: A visual tool for analysis of selection using CodeML. Ecol. Evolut. 2019, 9, 3891–3898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z. PAML: A program package for phylogenetic analysis by maximum likelihood. Bioinformatics 1997, 13, 555–556. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Cho, M.-S.; Kim, J.H.; Yamada, T.; Maki, M.; Kim, S.-C. Plastome characterization and comparative analyses of wild crabapples (Malus baccata and M. toringo): Insights into infraspecific plastome variation and phylogenetic relationships. Tree Genet. Genomes 2021, 17, 41. [Google Scholar] [CrossRef]
- Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; DePamphilis, C.W.; Chumley, T.W.; Haberle, R.C. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 2005, 395, 348–384. [Google Scholar] [CrossRef]
- Daniell, H.; Wurdack, K.J.; Kanagaraj, A.; Lee, S.-B.; Saski, C.; Jansen, R.K. The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor. Appl. Genet. 2008, 116, 723–737. [Google Scholar] [CrossRef] [Green Version]
- Daniell, H.; Lin, C.-S.; Yu, M.; Chang, W.-K. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Kang, G.-H.; Pak, J.-H.; Kim, S.-C. Characterization and comparison of two complete plastomes of Rosaceae species (Potentilla dickinsii var. glabrata and Spiraea insularis) endemic to Ulleung Island, Korea. Int. J. Mol. Sci. 2020, 21, 4933. [Google Scholar] [CrossRef]
- Rono, P.C.; Dong, X.; Yang, J.-X.; Mutie, F.M.; Oulo, M.A.; Malombe, I. Initial complete chloroplast genomes of Alchemilla (Rosaceae): Comparative analysis and phylogenetic relationships. Front. Genet. 2020, 11, 560368. [Google Scholar] [CrossRef]
- Corneille, S.; Lutz, K.; Maliga, P. Conservation of RNA editing between rice and maize plastids: Are most editing events dispensable? Mol. Gen. Genet. 2000, 264, 4129–4424. [Google Scholar] [CrossRef]
- Tsudzuki, T.; Wakasugi, T.; Suigura, M. Comparative analysis of RNA editing sites in higher plant chloroplasts. J. Mol. Evol. 2001, 53, 327–332. [Google Scholar] [CrossRef]
- Guo, W.; Frewe, F.; Mower, J.P. Variable frequency of plastid RNA editing among ferns and repeated loss of uridine-to-cytidine editing from vascular plants. PLoS ONE 2015, 10, e0117075. [Google Scholar] [CrossRef] [Green Version]
- Bock, R. Sense from nonsense: How the genetic information of chloroplast is altered by RNA editing. Biochemie 2000, 82, 547–557. [Google Scholar] [CrossRef]
- Chateigner-Boutin, A.L.; Small, I. Organellar RNA editing. Wiley Interdiscip. Rev. RNA 2011, 2, 493–506. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yang, J.Y.; Park, J.S.; Yamada, T.; Maki, M.; Kim, S.-C. Comparison of whole plastome sequences between thermogenic skunk cabbage Symplocarpus renifolius and nonthermogenic S. nipponicus (Orontioideae; Araceae) in East Asia. Int. J. Mol. Sci. 2019, 20, 4678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Chen, S.; Zhou, R.; Fan, Q.; Li, F.; Liao, W. Molecular evidence for natural hybridization between Cotoneaster dielsianus and C. glaucophyllus. Front. Plant Sci. 2017, 8, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Lu, K.; Zhang, K.; He, Y.; Wang, H.; Chai, G. The chloroplast genome of Amygdalus L. (Rosaceae) reveals the phylogenetic relationship and divergence time. BMC Genom. 2021, 22, 645. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.-Y.; Zhang, Y.-H.; Yan, H.-J.; Qiu, X.-Q.; Wang, Q.-G.; Li, S.-B. The complete chloroplast genome of a key ancestor of modern roses, Rosa chinensis var. spontanea, and a comparison with congeneric species. Molecules 2018, 23, 389. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Cai, C.; Tao, Y.; Sun, Z.; Jiang, M.; Chen, L. Variation and evolution of the whole chloroplast genomes of Fragaria spp. (Rosaceae). Front. Plant Sci. 2021, 12, 754209. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Uematsu, C. Structural analysis of chloroplast DNA in Prunus (Rosaceae): Evolution, genetic diversity and unequal mutations. Theor. Appl. Genet. 2005, 111, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Guan, Q.; Amin, A.; Zhu, W.; Li, M.; Li, X. Complete plastid genome of Eriobotrya japonica (Thunb.) Lindl and comparative analysis in Rosaceae. SpringerPlus 2016, 5, 2036. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Li, J.; Zhang, H.; Cai, B.; Gao, Z.; Qiao, Y. The complete chloroplast genome sequence of strawberry (Fragaria_x ananassa Duch.) and comparison with related species of Rosaceae. PeerJ 2017, 5, e3919. [Google Scholar] [CrossRef] [Green Version]
- Sloan, D.B.; Triant, D.A.; Forrester, N.J.; Bergner, L.M.; Wu, M.; Taylor, D.R. A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol. Phylogenet. Evol. 2014, 72, 82–89. [Google Scholar] [CrossRef]
- Jiang, P.; Shi, F.X.; Li, M.R.; Liu, B.; Wen, J.; Xiao, H.X. Positive selection driving cytoplasmic genome evolution of the medicinally important ginseng plant genus Panax. Front. Plant Sci. 2018, 9, 359. [Google Scholar] [CrossRef]
- Li, P.; Lou, G.; Cai, X.; Zhang, B.; Cheng, Y.; Wang, H. Comparison of the complete plastomes and the phylogenetic analysis of Paulownia species. Sci. Rep. 2020, 10, 2225. [Google Scholar] [CrossRef] [Green Version]
- Makałowski, W.; Boguski, M.S.; Hughes, A.L.; Yeager, M. Synonymous and nonsynonymous substitution distances are correlated in mouse and rat genes. J. Mol. Evol. 1998, 47, 119–121. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, F.; Yang, D.-G.; Li, W.; Zhou, X.-J.; Pei, X.-Y. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Front. Plant Sci. 2018, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Piot, A.; Hackel, J.; Christin, P.A.; Besnard, G. One-third of the plastid genes evolved under positive selection in PACMAD grasses. Planta 2018, 247, 255–266. [Google Scholar] [CrossRef]
- Wu, Z.; Liao, R.; Yang, T.; Dong, X.; Lan, D.; Qin, R. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae). BMC Genom. 2020, 21, 621. [Google Scholar] [CrossRef]
- Horváth, E.M.; Peter, S.O.; Joët, T.; Rumeau, D.; Cournac, L.; Horváth, G.V. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol. 2000, 123, 1337–1350. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.-Z.; Liu, Y.-L.; Zhang, D.; Li, W.; Gao, J.; Liu, Y. Evolution of Oryza chloroplast genome promoted adaptation to diverse ecological habitats. Commun. Biol. 2019, 2, 278. [Google Scholar] [CrossRef] [Green Version]
- Carbonell-Caballero, J.; Alonso, R.; Ibañez, V.; Terol, J.; Talon, M.; Dopazo, J. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol. Biol. Evol. 2015, 32, 2015–2035. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Chen, H.; He, S.; Wang, L.; Chen, A.J.; Liu, C. Sequencing, characterization, and comparative analyses of the plastome of Caragana rosea var. rosea. Int. J. Mol. Sci. 2018, 19, 1419. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-Y.; Kim, M.-H.; Kim, J.S. The Chromosome Index of Korean Native Plants (IV); National Institute of Biological Resources, Ministry of Environment: Incheon, Korea, 2013. [Google Scholar] [CrossRef]
Taxa | Cotoneaster dielsianus | Cotoneaster hebephyllus | Cotoneaster integerrimus | Cotoneaster mongolicus | Cotoneaster multiflorus | Cotoneaster submultiflorus | Cotoneaster tenuipes |
---|---|---|---|---|---|---|---|
Total cpDNA size (bp) | 159,898 | 160,016 | 159,996 | 159,797 | 159,855 | 159,614 | 159,595 |
GC content (%) | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 | 36.6 |
LSC size (bp)/ GC content (%) | 87,901/34.3 | 87,901/34.3 | 87,813/34.3 | 87,818/34.3 | 87,903/34.3 | 87,786/34.3 | 87,592/34.3 |
IR size (bp)/ GC content (%) | 26,397/42.6 | 26,397/42.6 | 26,501/42.6 | 26,371/42.7 | 26,371/42.7 | 26,371/42.7 | 26,382/42.7 |
SSC size (bp)/ GC content (%) | 19,203/30.5 | 19,203/30.4 | 19,181/30.3 | 19,237/30.5 | 19,210/30.5 | 19,086/30.5 | 19,239/30.4 |
Number of genes | 131 | 131 | 131 | 131 | 131 | 131 | 131 |
Number of protein-coding genes | 84 | 84 | 84 | 84 | 84 | 84 | 84 |
Number of tRNA genes | 37 | 37 | 37 | 37 | 37 | 37 | 37 |
Number of rRNA genes | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
Number of duplicated genes | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
Accession number | MZ475329 | MZ475334 | MZ475328 | MZ475330 | MZ475331 | MZ475332 | MZ475333 |
Total reads | 50,739,498 | 49,015,178 | 49,728,586 | 52,448,006 | 54,743,088 | 42,975,682 | 51,539,694 |
Coverage of sequences | 721 | 149 | 223 | 582 | 229 | 160 | 755 |
Gene Name | Models | np | ln L | Model Compared | Likelihood Ratio Test p-Value | Positively Selected Sites |
---|---|---|---|---|---|---|
ccsA | M8 | 33 | −1330.734734 | M7 vs. M8 | 0.0000 | 75 L 0.962 * |
M7 | 31 | −1379.715271 | ||||
matK | M8 | 33 | −2086.970879 | M7 vs. M8 | 0.0000 | 405 V 0.990 * |
M7 | 31 | −2134.673613 | ||||
ndhD | M8 | 33 | −2119.842957 | M7 vs. M8 | 0.0000 | 32 T 0.995 ** |
M7 | 31 | −2177.429276 | ||||
ndhF | M8 | 33 | −3048.774585 | M7 vs. M8 | 0.0011 | 489 I 0.989 * |
M7 | 31 | −3055.570081 | ||||
ndhK | M8 | 33 | −1282.922705 | M7 vs. M8 | 0.0000 | 11 T 0.953 * |
M7 | 31 | −1809.996500 | ||||
petA | M8 | 33 | −1349.032847 | M7 vs. M8 | 0.0000 | 154 S 0.959 * |
M7 | 31 | −1401.590518 | ||||
rbcL | M8 | 33 | −1970.087905 | M7 vs. M8 | 0.0000 | 255 I 0.969 * |
M7 | 31 | −2026.722719 | ||||
rpl16 | M8 | 33 | −657.974758 | M7 vs. M8 | 0.0000 | 4 P 0.998 ** |
M7 | 31 | −652.786169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Kim, S.-H.; Pak, J.-H.; Kim, S.-C. Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island. Genes 2022, 13, 728. https://doi.org/10.3390/genes13050728
Yang J, Kim S-H, Pak J-H, Kim S-C. Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island. Genes. 2022; 13(5):728. https://doi.org/10.3390/genes13050728
Chicago/Turabian StyleYang, JiYoung, Seon-Hee Kim, Jae-Hong Pak, and Seung-Chul Kim. 2022. "Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island" Genes 13, no. 5: 728. https://doi.org/10.3390/genes13050728
APA StyleYang, J., Kim, S.-H., Pak, J.-H., & Kim, S.-C. (2022). Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island. Genes, 13(5), 728. https://doi.org/10.3390/genes13050728