An Integrative Segmentation Framework for Cell Nucleus of Fluorescence Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Benchmark Dataset
2.2. Algorithm Framework
2.3. Model Design
2.3.1. Network Architecture
2.3.2. Implementation Details
2.4. Post-Processing: Interior Expansion Algorithm to Convert a 3-Class Label to an Instance Label
2.5. Performance Evaluation Metrics
3. Results
3.1. Performance of Proposed Framework and Other Existing Nucleus Segmentation Methods
3.1.1. ASW-Net Performs Better in Different Nuclear Density
3.1.2. ASW-Net Excels at Segmentation in Low SNR Dataset
3.2. Ablation Study
3.3. Visualization of Deep Features Extracted from Images
3.4. Strong Correlation of Downstream Metric Derived from Experts and Proposed Framework
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caicedo, J.C.; Roth, J.; Goodman, A.; Becker, T.; Karhohs, K.W.; Broisin, M.; Molnar, C.; McQuin, C.; Singh, S.; Theis, F.J.; et al. Evaluation of deep learning strategies for nucleus segmentation in fluorescence images. Cytom. Part A 2019, 95, 952–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y. Automated scanning electron microscope based mineral liberation analysis. An introduction to JKMRC/FEI mineral liberation analyser. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar] [CrossRef]
- Gerdes, M.J.; Sevinsky, C.J.; Sood, A.; Adak, S.; Bello, M.O.; Bordwell, A.; Can, A.; Corwin, A.; Dinn, S.; Filkins, R.J.; et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue. Proc. Natl. Acad. Sci. USA 2013, 110, 11982–11987. [Google Scholar] [CrossRef] [Green Version]
- Giesen, C.; Wang, H.A.O.; Schapiro, D.; Zivanovic, N.; Jacobs, A.; Hattendorf, B.; Schüffler, P.J.; Grolimund, D.; Buhmann, J.M.; Brandt, S.; et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014, 11, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Ljosa, V.; Sokolnicki, K.L.; Carpenter, A.E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 2012, 9, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutros, M.; Heigwer, F.; Laufer, C. Microscopy-based high-content screening. Cell 2015, 163, 1314–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollandi, R.; Szkalisity, A.; Toth, T.; Tasnadi, E.; Molnar, C.; Mathe, B.; Grexa, I.; Molnar, J.; Balind, A.; Gorbe, M.; et al. nucleAIzer: A parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst. 2020, 10, 453–458.e6. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Verma, R.; Sharma, S.; Bhargava, S.; Vahadane, A.; Sethi, A. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 2017, 36, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Meijering, E. Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Process. Mag. 2012, 29, 140–145. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Malpica, N.; de Solórzano, C.O.; Vaquero, J.J.; Santos, A.; Vallcorba, I.; García-Sagredo, J.M.; del Pozo, F. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 1997, 28, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Qi, J.; Pan, L.; Wali, S. Integrating deep convolutional neural networks with marker-controlled watershed for overlapping nuclei segmentation in histopathology images. Neurocomputing 2020, 376, 166–179. [Google Scholar] [CrossRef]
- Li, G.; Liu, T.; Tarokh, A.; Nie, J.; Guo, L.; Mara, A.; Holley, S.; Wong, S.T. 3D cell nuclei segmentation based on gradient flow tracking. BMC Cell Biol. 2007, 8, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Prince, J.L. Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing 1998, 7, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Caicedo, J.C.; Goodman, A.; Karhohs, K.W.; Cimini, B.A.; Ackerman, J.; Haghighi, M.; Heng, C.; Becker, T.; Doan, M.; McQuin, C.; et al. Nucleus segmentation across imaging experiments: The 2018 Data Science Bowl. Nat. Methods 2019, 16, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Minaee, S.; Boykov, Y.Y.; Porikli, F.; Plaza, A.J.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef] [PubMed]
- Gibson, E.; Giganti, F.; Hu, Y.; Bonmati, E.; Bandula, S.; Gurusamy, K.; Davidson, B.R.; Pereira, S.P.; Clarkson, M.J.; Barratt, D.C. Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans. Med Imaging 2018, 37, 1822–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Lei, Y.; Liu, Y.; Tian, S.; Higgins, K.; Beitler, J.J.; Yu, D.S.; Jiang, X.; Liu, T.; Curran, W.J.; et al. Automatic multi-organ segmentation in thorax CT images using U-Net-GAN. In Medical Imaging 2019: Computer-Aided Diagnosis; SPIE: Washington, DC, USA, 2019; p. 35. [Google Scholar]
- Vu, Q.D.; Graham, S.; Kurc, T.; To, M.N.N.; Shaban, M.; Qaiser, T.; Koohbanani, N.A.; Khurram, S.A.; Kalpathy-Cramer, J.; Zhao, T.; et al. Methods for segmentation and classification of digital microscopy tissue images. Front. Bioeng. Biotechnol. 2019, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; He, H.; Wei, P.; Zhang, C.; Zhang, J.; Chen, J. Tumor tissue segmentation for histopathological images. In Proceedings of the 1st ACM International Conference on Multimedia in Asia, MMAsia, Beijing, China, 16–18 December 2019. [Google Scholar]
- Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med Image Anal. 2019, 58, 101563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Z.; Xie, W.; Zhang, Y.; Lu, Y. RIC-Unet: An improved neural network based on Unet for nuclei segmentation in histology images. IEEE Access 2019, 7, 21420–21428. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351. [Google Scholar]
- Chen, W.; Zhang, Y.; He, J.; Qiao, Y.; Chen, Y.; Shi, H.; Tang, X. W-Net: Bridged U-Net for 2D Medical Image Segmentation. arXiv 2018, arXiv:1807.04459, 1–13. [Google Scholar]
- Kromp, F.; Bozsaky, E.; Rifatbegovic, F.; Fischer, L.; Ambros, M.; Berneder, M.; Weiss, T.; Lazic, D.; Dörr, W.; Hanbury, A.; et al. An annotated fluorescence image dataset for training nuclear segmentation methods. Sci. Data 2020, 7, 262. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In 32nd International Conference on Machine Learning, ICML 2015; Springer: Cham, Switzerland, 2015; Volume 1, pp. 448–456. [Google Scholar]
- Ketkar, N. Introduction to Keras. In Deep Learning with Python; Apress: New York, NY, USA, 2017; pp. 97–111. [Google Scholar]
- Abadi, M. TensorFlow: Learning functions at scale. ACM SIGPLAN Not. 2016, 51, 1. [Google Scholar] [CrossRef]
- Wichrowska, O.; Maheswaranathan, N.; Hoffman, M.W.; Colmenarejo, S.G.; Denii, M.; De Freitas, N.; Sohl-Dickstein, J. Learned optimizers that scale and generalize. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 8, pp. 5744–5753. [Google Scholar]
- Ben Naceur, M.; Akil, M.; Saouli, R.; Kachouri, R. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy. Med. Image Anal. 2020, 63, 101692. [Google Scholar] [CrossRef] [PubMed]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- McQuin, C.; Goodman, A.; Chernyshev, V.; Kamentsky, L.; Cimini, B.A.; Karhohs, K.W.; Doan, M.; Ding, L.; Rafelski, S.M.; Thirstrup, D.; et al. CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol. 2018, 16, e2005970. [Google Scholar] [CrossRef] [Green Version]
- Sharif, J.M.; Miswan, M.F.; Ngadi, M.A.; Salam, M.S.H.; bin Abdul Jamil, M.M. Red blood cell segmentation using masking and watershed algorithm: A preliminary study. In Proceedings of the 2012 International Conference on Biomedical Engineering, Macau, China, 28–30 May 2012; pp. 258–262. [Google Scholar]
- Farias, G.; Dormido-Canto, S.; Vega, J.; Rattá, G.A.; Vargas, H.; Hermosilla, G.; Alfaro, L.; Valencia, A. Automatic feature extraction in large fusion databases by using deep learning approach. Fusion Eng. Des. 2016, 112, 979–983. [Google Scholar] [CrossRef]
- Stringer, C.; Wang, T.; Michaelos, M.; Pachitariu, M. Cellpose: A generalist algorithm for cellular segmentation. Nat. Methods 2020, 18, 100–106. [Google Scholar] [CrossRef]
Method | DICE1 | DICE2 | AJI | DQ | SQ | PQ |
---|---|---|---|---|---|---|
CellProfiler [32] | 87.884 | 73.491 | 67.740 | 81.165 | 79.319 | 64.506 |
U-Net [1] | 89.094 | 86.916 | 78.717 | 92.395 | 79.562 | 73.646 |
SW-Net | 89.282 | 87.466 | 79.219 | 91.666 | 80.043 | 73.505 |
ASW-Net | 89.642 | 87.518 | 79.806 | 91.666 | 80.627 | 74.058 |
ASW-Net + Interior expansion | 96.452 | 84.798 | 90.200 | 94.431 | 91.670 | 86.645 |
Method | DICE1 | DICE2 | AJI | DQ | SQ | PQ |
---|---|---|---|---|---|---|
CellProfiler [32] | 0.64476 | 0.46786 | 0.29697 | 0.31771 | 0.64703 | 0.20601 |
U-Net [1] | 0.78672 | 0.74143 | 0.57064 | 0.71474 | 0.69285 | 0.49442 |
SW-Net | 0.78661 | 0.74262 | 0.56630 | 0.70997 | 0.69462 | 0.49268 |
ASW-Net | 0.78957 | 0.74885 | 0.56910 | 0.73218 | 0.70059 | 0.51276 |
ASW-Net + Interior expansion | 0.84228 | 0.72494 | 0.61944 | 0.76275 | 0.79579 | 0.60729 |
Method | DICE1 | DICE2 | AJI | DQ | SQ | PQ |
---|---|---|---|---|---|---|
CellProfiler [32] | 0.59226 | 0.61923 | 0.35380 | 0.44781 | 0.69943 | 0.31294 |
U-Net [1] | 0.49404 | 0.52160 | 0.30319 | 0.35329 | 0.61444 | 0.21976 |
SW-Net | 0.48451 | 0.53914 | 0.30149 | 0.32245 | 0.61859 | 0.20240 |
ASW-Net | 0.61887 | 0.60938 | 0.39892 | 0.50748 | 0.66386 | 0.33850 |
ASW-Net + Interior expansion | 0.65787 | 0.60340 | 0.42803 | 0.54613 | 0.71036 | 0.38913 |
Aspect | System Variant | AJI | ΔAJI |
---|---|---|---|
ASW-Net | 79.806 | - | |
Attention | No Attention | 79.219 | −0.587 |
Augmentation | No rotation | 78.355 | −1.451 |
No flip | 78.592 | −1.214 | |
Post-processing | Watershed | 79.811 | +0.005 |
Interior expansion | 90.200 | +10.394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Liu, Z.; Song, W.; Zhen, X.; Yuan, K.; Xu, F.; Lin, G.N. An Integrative Segmentation Framework for Cell Nucleus of Fluorescence Microscopy. Genes 2022, 13, 431. https://doi.org/10.3390/genes13030431
Pan W, Liu Z, Song W, Zhen X, Yuan K, Xu F, Lin GN. An Integrative Segmentation Framework for Cell Nucleus of Fluorescence Microscopy. Genes. 2022; 13(3):431. https://doi.org/10.3390/genes13030431
Chicago/Turabian StylePan, Weihao, Zhe Liu, Weichen Song, Xuyang Zhen, Kai Yuan, Fei Xu, and Guan Ning Lin. 2022. "An Integrative Segmentation Framework for Cell Nucleus of Fluorescence Microscopy" Genes 13, no. 3: 431. https://doi.org/10.3390/genes13030431
APA StylePan, W., Liu, Z., Song, W., Zhen, X., Yuan, K., Xu, F., & Lin, G. N. (2022). An Integrative Segmentation Framework for Cell Nucleus of Fluorescence Microscopy. Genes, 13(3), 431. https://doi.org/10.3390/genes13030431