Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia
Abstract
1. Introduction
2. Consanguinity and CHD
3. Current Perspectives and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruneau, B.G. The Developmental Genetics of Congenital Heart Disease. Nature 2008, 451, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.J.; Correa, A.; Feinstein, J.A.; Botto, L.; Britt, A.E.; Daniels, S.R.; Elixson, M.; Warnes, C.A.; Webb, C.L. Noninherited Risk Factors and Congenital Cardiovascular Defects: Current Knowledge. Circulation 2007, 115, 2995–3014. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; He, J.; Shao, X. Incidence and Mortality Trend of Congenital Heart Disease at the Global, Regional, and National Level, 1990–2017. Medicine 2020, 99, e20593. [Google Scholar] [CrossRef] [PubMed]
- Kurdi, A.M.; Majeed-Saidan, M.A.; Al Rakaf, M.S.; AlHashem, A.M.; Botto, L.D.; Baaqeel, H.S.; Ammari, A.N. Congenital Anomalies and Associated Risk Factors in a Saudi Population: A Cohort Study from Pregnancy to Age 2 Years. BMJ Open 2019, 9, e026351. [Google Scholar] [CrossRef] [PubMed]
- Stoltenberg, C.; Magnus, P.; Lie, R.T.; Daltveit, A.K.; Irgens, L.M. Birth Defects and Parental Consanguinity in Norway. Am. J. Epidemiol. 1997, 145, 439–448. [Google Scholar] [CrossRef]
- Jaber, L.; Merlob, P.; Bu, X.; Rotter, J.I.; Shohat, M. Marked Parental Consanguinity as a Cause for Increased Major Malformations in an Israeli Arab Community. Am. J. Med. Genet. 1992, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Al Halees, Z. First-Cousin Matings and Congenital Heart Disease in Saudi Arabia. Public Health Genom. 1999, 2, 69–73. [Google Scholar] [CrossRef]
- Teebi, A.S.; Teebi, S.A. Genetic Diversity among the Arabs. Community Genet. 2005, 8, 21–26. [Google Scholar] [CrossRef]
- Monies, D.; Abouelhoda, M.; Assoum, M.; Moghrabi, N.; Rafiullah, R.; Almontashiri, N.; Alowain, M.; Alzaidan, H.; Alsayed, M.; Subhani, S.; et al. Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population. Am. J. Hum. Genet. 2019, 104, 1182–1201. [Google Scholar] [CrossRef]
- Alkuraya, F.S. Discovery of Rare Homozygous Mutations from Studies of Consanguineous Pedigrees. Curr. Protoc. Hum. Genet. 2012, 75, 6.12.1–6.12.13. [Google Scholar] [CrossRef]
- Alkuraya, F. Impact of New Genomic Tools on the Practice of Clinical Genetics in Consanguineous Populations: The Saudi Experience. Clin. Genet. 2013, 84, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of Homozygosity: Windows into Population History and Trait Architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.J.; Cohen, B.H.; Chase, G.A.; Diomond, E.L. An epidemiologic approach to the evaluation of the effect of inbreeding on prereproductive mortality. Am. J. Epidemiol. 1987, 125, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.F. Genetic Disorders among Arab Populations. J. Med. Genet. 1997, 34, 704. [Google Scholar] [CrossRef][Green Version]
- Woods, C.G.; Cox, J.; Springell, K.; Hampshire, D.J.; Mohamed, M.D.; McKibbin, M.; Stern, R.; Raymond, F.L.; Sandford, R.; Malik Sharif, S.; et al. Quantification of Homozygosity in Consanguineous Individuals with Autosomal Recessive Disease. Am. J. Hum. Genet. 2006, 78, 889–896. [Google Scholar] [CrossRef]
- Kamal, N.M.; Sahly, A.N.; Banaganapalli, B.; Rashidi, O.M.; Shetty, P.J.; Al-Aama, J.Y.; Shaik, N.A.; Elango, R.; Saadah, O.I. Whole Exome Sequencing Identifies Rare Biallelic ALMS1 Missense and Stop Gain Mutations in Familial Alström Syndrome Patients. Saudi J. Biol. Sci. 2020, 27, 271–278. [Google Scholar] [CrossRef]
- Chehab, G.; Chedid, P.; Saliba, Z.; Bouvagnet, P. Congenital Cardiac Disease and Inbreeding: Specific Defects Escape Higher Risk Due to Parental Consanguinity. Cardiol. Young 2007, 17, 414–422. [Google Scholar] [CrossRef]
- Becker, S.M.; Al Halees, Z.; Molina, C.; Paterson, R.M. Consanguinity and Congenital Heart Disease in Saudi Arabia. Am. J. Med. Genet. 2001, 99, 8–13. [Google Scholar] [CrossRef]
- Hamamy, H. Consanguineous Marriages. J. Community Genet. 2012, 3, 185–192. [Google Scholar] [CrossRef]
- Monies, D.; Abouelhoda, M.; AlSayed, M.; Alhassnan, Z.; Alotaibi, M.; Kayyali, H.; Al-Owain, M.; Shah, A.; Rahbeeni, Z.; Al-Muhaizea, M.A.; et al. The Landscape of Genetic Diseases in Saudi Arabia Based on the First 1000 Diagnostic Panels and Exomes. Hum. Genet. 2017, 136, 921–939. [Google Scholar] [CrossRef]
- El Mouzan, M.I.; Al Salloum, A.A.; Al Herbish, A.S.; Qurachi, M.M.; Al Omar, A.A. Consanguinity and Major Genetic Disorders in Saudi Children: A Community-Based Cross-Sectional Study. Ann. Saudi Med. 2008, 28, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, A.M.; Albawardi, N.M.; Ali, A.; Househ, S.M.; Elmetwally, A. The Epidemiology of Congenital Heart Diseases in Saudi Arabia: A Systematic Review. J. Public Health Epidemiol. 2015, 7, 232–240. [Google Scholar] [CrossRef]
- Fahed, A.C.; Gelb, B.D.; Seidman, J.G.; Seidman, C.E. Genetics of Congenital Heart Disease: The Glass Half Empty. Circ. Res. 2013, 112, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, S.E.; Lyle, R.; Dermitzakis, E.T.; Reymond, A.; Deutsch, S. Chromosome 21 and Down Syndrome: From Genomics to Pathophysiology. Nat. Rev. Genet. 2004, 5, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Bondy, C.A. Turner Syndrome 2008. Horm. Res. Paediatr. 2009, 71, 52–56. [Google Scholar] [CrossRef]
- Pont, S.J.; Robbins, J.M.; Bird, T.M.; Gibson, J.B.; Cleves, M.A.; Tilford, J.M.; Aitken, M.E. Congenital Malformations among Liveborn Infants with Trisomies 18 and 13. Am. J. Med. Genet. Part A 2006, 140, 1749–1756. [Google Scholar] [CrossRef]
- Al-Hassnan, Z.N.; Albawardi, W.; Almutairi, F.; AlMass, R.; AlBakheet, A.; Mustafa, O.M.; AlQuait, L.; Shinwari, Z.M.A.; Wakil, S.; Salih, M.A.; et al. Identification of Novel Genomic Imbalances in Saudi Patients with Congenital Heart Disease. Mol. Cytogenet. 2018, 11, 9. [Google Scholar] [CrossRef]
- Lamb, A.N.; Rosenfeld, J.A.; Neill, N.J.; Talkowski, M.E.; Blumenthal, I.; Girirajan, S.; Keelean-Fuller, D.; Fan, Z.; Pouncey, J.; Stevens, C.; et al. Haploinsufficiency of SOX5 at 12p12.1 Is Associated with Developmental Delays with Prominent Language Delay, Behavior Problems, and Mild Dysmorphic Features. Hum. Mutat. 2012, 33, 728–740. [Google Scholar] [CrossRef]
- Hussein, I.R.; Bader, R.S.; Chaudhary, A.G.; Bassiouni, R.; Alquaiti, M.; Ashgan, F.; Schulten, H.-J.; Al Qahtani, M.H. Identification of De Novo and Rare Inherited Copy Number Variants in Children with Syndromic Congenital Heart Defects. Pediatr. Cardiol. 2018, 39, 924–940. [Google Scholar] [CrossRef]
- Alharbi, K.M.; Al-Mazroea, A.H.; Abdallah, A.M.; Almohammadi, Y.; Carlus, S.J.; Basit, S. Targeted Next-Generation Sequencing of 406 Genes Identified Genetic Defects Underlying Congenital Heart Disease in Down Syndrome Patients. Pediatr. Cardiol. 2018, 39, 1676–1680. [Google Scholar] [CrossRef]
- Dasouki, M.J.; Wakil, S.M.; Al-Harazi, O.; Alkorashy, M.; Muiya, N.P.; Andres, E.; Hagos, S.; Aldusery, H.; Dzimiri, N.; Colak, D. New Insights into the Impact of Genome-Wide Copy Number Variations on Complex Congenital Heart Disease in Saudi Arabia. OMICS A J. Integr. Biol. 2020, 24, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, R.; Al Hashem, A.; Alghamdi, M.H.; Seidahmad, M.Z.; Wakil, S.M.; Dagriri, K.; Keavney, B.; Goodship, J.; Alyousif, S.; Al-Habshan, F.M.; et al. Positional Mapping of PRKD1, NRP1 and PRDM1 as Novel Candidate Disease Genes in Truncus Arteriosus. J. Med. Genet. 2015, 52, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Jaiyesimi, F.; Ruberu, D.K.; Misra, V.K. Pattern of Congenital Heart Disease in King Fahd Specialist Hospital, Buraidah. Ann. Saudi Med. 1993, 13, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Baht, B.; Sheikh, A.; Khan, A.; Dad, M. Pattern of Congenital Heart Disease among Children in Madina Munawara. Saudi Heart Assoc. 1997, 9, 16–19. [Google Scholar]
- Abbag, F. Pattern of Congenital Heart Disease in the Southwestern Region of Saudi Arabia. Ann. Saudi Med. 1998, 18, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Greer, W.; Sandridge, A.L.; Al-Menieir, M.; Al Rowais, A. Geographical Distribution of Congenital Heart Defects in Saudi Arabia. Ann. Saudi Med. 2005, 25, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Alabdulgader, A.A.A. Congenital Heart Disease in 740 Subjects: Epidemiological Aspects. Ann. Trop. Paed. 2001, 21, 111–118. [Google Scholar] [CrossRef]
- Alqurashi, M.; Mouzan, M.E.; Herbish, A.A.; Salloum, A.A.; Omer, A. Symptomatic Congenital Heart Disease in the Saudi Children and Adolescents Project. Ann. Saudi Med. 2007, 27, 442–444. [Google Scholar]
- Alnajjar, A.A.; Morsy, M.-M.F.; Almuzainy, I.S.; Sheikh, A.A. Pediatric Heart Diseases in Madina, Saudi Arabia. Current Status and Future Expectations. Saudi Med. J. 2009, 30, 6. [Google Scholar]
- Almawazini, A.M.; Al-Ghamdi, A.S. Congenital Heart Disease in South-West Saudi Arabia. Saudi Med. J. 2011, 32, 195. [Google Scholar]
- Almawazini, A.M.; Hanafi, H.K.; Madkhali, H.A.; Majrashi, N.B. Effectiveness of the Critical Congenital Heart Disease Screening Program for Early Diagnosis of Cardiac Abnormalities in Newborn Infants. SMJ 2017, 38, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Khoshhal, S.Q.; Albasri, A.M.; Morsy, M.; Mofeed, F.; Alnajjar, A.A. The Trends and Patterns of Congenital Heart Diseases at Madinah Cardiac Center, Madinah, Saudi Arabia. SMJ 2020, 41, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Seliem, M.A.; Bou-Holaigah, I.H.; Al-Sannaa, N. Influence of Consanguinity on the Pattern of Familial Aggregation of Congenital Cardiovascular Anomalies in an Outpatient Population. Community Genet. 2007, 10, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.; Brueckner, M. Genetics and Genomics of Congenital Heart Disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef]
- Benson, D.W.; Silberbach, G.M.; Kavanaugh-McHugh, A.; Cottrill, C.; Zhang, Y.; Riggs, S.; Smalls, O.; Johnson, M.C.; Watson, M.S.; Seidman, J.G.; et al. Mutations in the Cardiac Transcription Factor NKX2.5 Affect Diverse Cardiac Developmental Pathways. J. Clin. Investig. 1999, 104, 1567–1573. [Google Scholar] [CrossRef]
- Schott, J.-J.; Benson, D.W.; Basson, C.T.; Pease, W.; Silberbach, G.M.; Moak, J.P.; Maron, B.J.; Seidman, C.E.; Seidman, J.G. Congenital Heart Disease Caused by Mutations in the Transcription Factor NKX2-5. Sci. New Ser. 1998, 281, 108–111. [Google Scholar] [CrossRef]
- Sifrim, A.; Hitz, M.-P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.A.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct Genetic Architectures for Syndromic and Nonsyndromic Congenital Heart Defects Identified by Exome Sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef]
- Massadeh, S.; Albeladi, M.; Albesher, N.; Alhabshan, F.; Kampe, K.D.; Chaikhouni, F.; Kabbani, M.S.; Beetz, C.; Alaamery, M. Novel Autosomal Recessive Splice-Altering Variant in PRKD1 Is Associated with Congenital Heart Disease. Genes 2021, 12, 612. [Google Scholar] [CrossRef]
- Massadeh, S.; Alhashem, A.; Laar, I.M.B.H.; Alhabshan, F.; Ordonez, N.; Alawbathani, S.; Khan, S.; Kabbani, M.S.; Chaikhouni, F.; Sheereen, A.; et al. ADAMTS19—Associated Heart Valve Defects: Novel Genetic Variants Consolidating a Recognizable Cardiac Phenotype. Clin. Genet. 2020, 98, 56–63. [Google Scholar] [CrossRef]
- Bittles, A.H.; Black, M.L. Consanguineous Marriage and Human Evolution. Annu. Rev. Anthropol. 2010, 39, 193–207. [Google Scholar] [CrossRef]
- Massadeh, S.; Alhabshan, F.; AlSudairi, H.N.; Alkwai, S.; Alswailm, M.; Kabbani, M.S.; Chaikhouni, F.; Alaamery, M. The Role of the Disrupted Podosome Adaptor Protein (SH3PXD2B) in Frank–Ter Haar Syndrome. Genes 2022, 13, 236. [Google Scholar] [CrossRef]
- el-Hazmi, M.A.; al-Swailem, A.R.; Warsy, A.S.; al-Swailem, A.M.; Sulaimani, R.; al-Meshari, A.A. Consanguinity among the Saudi Arabian Population. J. Med. Genet. 1995, 32, 623–626. [Google Scholar] [CrossRef] [PubMed]
Study Reference | City | Study Setting | Data Collection Year | CHD Sample Size | Findings |
---|---|---|---|---|---|
Prevalence and Relative Frequency Studies | |||||
[21] | AlQassim | Hospital | 1988–1991 | 320 | Relative frequency of VSD (38.5%) was higher ASD (11.5%), Pulmonary Stenosis (PS) (9%), PDA (8%) and AVSD (5%) |
[22] | AlMadina | Hospital | 1992–1995 | 1209 | VSD (29.7%), ASD (26%), PS (16.1%) and PDA (13.2%) |
[23] | Asir | Hospital | 1994–1996 | 335 | VSD (32.5%), PDA (15.8%); ASD (10.4%); PS (10.1%); AVSD (3.6%) and mitral valve prolapse (3.6%); CoA (3.3%); obstructive aortic valve lesions (2.7%); TOF (4.5%); common ventricle (2.7%); PA with VSD (1.8%); D-transposition of the great arteries (1.5%); Ebstein anomaly (1.5%) and PA (1.2%). |
[24] | Nation-wide | National registry | 1998–2002 | 5865 | The Southwestern region exhibits the highest burden of CHD. AlBaha with a prevalence estimate of 748/100,000. |
[25] | Hofuf | Hospital | 1997–2000 | 740 | VSD was the most common defect (39.5%), followed by ASD (11.5%), PS (8.9%), PDA (8.6%), AVSD (3.5%), TOF (4.2%), CoA (2.7%), AS (3.5%) |
[26] | Nation-wide | Household | 2004–2005 | 95 | The highest prevalence in the central region (27/10000). Northern and Eastern had a prevalence of (25/10,000) while the Southwestern region had a prevalence of 21/10,000. VSD was the most common defect (10/10,000). |
[27] | AlMadina | Hospital | 2007–2008 | 4348 | CHD represents 34.4% of all cardiac problems. VSD represented 34.5% of all CHD diagnoses, followed by ASD (8.9%), PS (7.9%), PDA (6%), AVSD (3.8%), TOF (3%), AS (3.5%), CoA (2.8%), TGA (3.5%), and others (26%) |
[28] | Albaha | Hospital | 2005–2010 | 2610 | VSD (29.6%), PDA (9.5%), ASD (9.3%), PS (7.9%), AVSD (6.0%), TOF (4.7%), COA (3.4%), AS (3.0%), and TGA (1.9%) |
[4] | Riyadh | Hospital | 2010–2013 | 1179 CA cases | The birth prevalence of CA was 412/10 000 births, driven mainly by CHD (148/10,000). Isolated CHD found in 62.5%, distributed as VSD (28%), ASD (25.3%), PA and PS (6.8%) and severe CHD (20.4%) |
[29] | Albaha | Hospital | 2016–2017 | 2961 | CHD was diagnosed in 49 patients of the positive test group, (1.7%) distributed as 5 (0.2%) patients with VSD, and 44 (1.5%) patients with large symptomatic PDA. |
[30] | AlMadina | Hospital | 2017–2019 | 1127 | The acyanotic CHDs were the predominant lesions, accounting for 84.8% of all cases, while the cyanotic types accounted for 13%. PDA VSD, ASD, CoA and AVSD represented 27.9%, 24.8%, 18.9%, 6.4%, and 4.4% of the total cases, respectively. TOF (8.7%), followed by TGA (1.7%) and TA (1.1%), were the most common cyanotic CHDs. |
Consanguinity-Associated Studies | |||||
[7] | Riyadh | CHD Registry | 1998 | 949 | There was a significantly higher incidence of CHD among first-cousin marriages (41.6%) in comparison to the general population (28.4%). |
[31] | Riyadh | CHD Registry | 1998 | 891 | It was found that consanguinity was significantly higher in the sample (40.4%) than in the general population (28.4%). Some forms of CHD are significantly associated with consanguinity, such as VSD, ASD, AVSD, PA, and PS, but not TOF, TA, AS, COA, or PDA. |
[32] | Dhahran | Hospital | 1996–2000 | 37 families | There were 23 consanguineous marriages (62%) in these families. Dilated cardiomyopathy was more common in consanguineous marriages; 26 cases vs. 2 in non-consanguineous marriages |
[19] | Nation-wide | Household | 2004–2005 | 11,554 | CHD was the only disease associated with first cousin consanguinity in 56% of respondents. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albesher, N.; Massadeh, S.; Hassan, S.M.; Alaamery, M. Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia. Genes 2022, 13, 354. https://doi.org/10.3390/genes13020354
Albesher N, Massadeh S, Hassan SM, Alaamery M. Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia. Genes. 2022; 13(2):354. https://doi.org/10.3390/genes13020354
Chicago/Turabian StyleAlbesher, Nour, Salam Massadeh, Sabah M. Hassan, and Manal Alaamery. 2022. "Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia" Genes 13, no. 2: 354. https://doi.org/10.3390/genes13020354
APA StyleAlbesher, N., Massadeh, S., Hassan, S. M., & Alaamery, M. (2022). Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia. Genes, 13(2), 354. https://doi.org/10.3390/genes13020354