Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia
Abstract
:1. Introduction
2. Consanguinity and CHD
3. Current Perspectives and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruneau, B.G. The Developmental Genetics of Congenital Heart Disease. Nature 2008, 451, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.J.; Correa, A.; Feinstein, J.A.; Botto, L.; Britt, A.E.; Daniels, S.R.; Elixson, M.; Warnes, C.A.; Webb, C.L. Noninherited Risk Factors and Congenital Cardiovascular Defects: Current Knowledge. Circulation 2007, 115, 2995–3014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; He, J.; Shao, X. Incidence and Mortality Trend of Congenital Heart Disease at the Global, Regional, and National Level, 1990–2017. Medicine 2020, 99, e20593. [Google Scholar] [CrossRef] [PubMed]
- Kurdi, A.M.; Majeed-Saidan, M.A.; Al Rakaf, M.S.; AlHashem, A.M.; Botto, L.D.; Baaqeel, H.S.; Ammari, A.N. Congenital Anomalies and Associated Risk Factors in a Saudi Population: A Cohort Study from Pregnancy to Age 2 Years. BMJ Open 2019, 9, e026351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoltenberg, C.; Magnus, P.; Lie, R.T.; Daltveit, A.K.; Irgens, L.M. Birth Defects and Parental Consanguinity in Norway. Am. J. Epidemiol. 1997, 145, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.; Merlob, P.; Bu, X.; Rotter, J.I.; Shohat, M. Marked Parental Consanguinity as a Cause for Increased Major Malformations in an Israeli Arab Community. Am. J. Med. Genet. 1992, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Al Halees, Z. First-Cousin Matings and Congenital Heart Disease in Saudi Arabia. Public Health Genom. 1999, 2, 69–73. [Google Scholar] [CrossRef]
- Teebi, A.S.; Teebi, S.A. Genetic Diversity among the Arabs. Community Genet. 2005, 8, 21–26. [Google Scholar] [CrossRef]
- Monies, D.; Abouelhoda, M.; Assoum, M.; Moghrabi, N.; Rafiullah, R.; Almontashiri, N.; Alowain, M.; Alzaidan, H.; Alsayed, M.; Subhani, S.; et al. Lessons Learned from Large-Scale, First-Tier Clinical Exome Sequencing in a Highly Consanguineous Population. Am. J. Hum. Genet. 2019, 104, 1182–1201. [Google Scholar] [CrossRef] [Green Version]
- Alkuraya, F.S. Discovery of Rare Homozygous Mutations from Studies of Consanguineous Pedigrees. Curr. Protoc. Hum. Genet. 2012, 75, 6.12.1–6.12.13. [Google Scholar] [CrossRef]
- Alkuraya, F. Impact of New Genomic Tools on the Practice of Clinical Genetics in Consanguineous Populations: The Saudi Experience. Clin. Genet. 2013, 84, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of Homozygosity: Windows into Population History and Trait Architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.J.; Cohen, B.H.; Chase, G.A.; Diomond, E.L. An epidemiologic approach to the evaluation of the effect of inbreeding on prereproductive mortality. Am. J. Epidemiol. 1987, 125, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.F. Genetic Disorders among Arab Populations. J. Med. Genet. 1997, 34, 704. [Google Scholar] [CrossRef] [Green Version]
- Woods, C.G.; Cox, J.; Springell, K.; Hampshire, D.J.; Mohamed, M.D.; McKibbin, M.; Stern, R.; Raymond, F.L.; Sandford, R.; Malik Sharif, S.; et al. Quantification of Homozygosity in Consanguineous Individuals with Autosomal Recessive Disease. Am. J. Hum. Genet. 2006, 78, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Kamal, N.M.; Sahly, A.N.; Banaganapalli, B.; Rashidi, O.M.; Shetty, P.J.; Al-Aama, J.Y.; Shaik, N.A.; Elango, R.; Saadah, O.I. Whole Exome Sequencing Identifies Rare Biallelic ALMS1 Missense and Stop Gain Mutations in Familial Alström Syndrome Patients. Saudi J. Biol. Sci. 2020, 27, 271–278. [Google Scholar] [CrossRef]
- Chehab, G.; Chedid, P.; Saliba, Z.; Bouvagnet, P. Congenital Cardiac Disease and Inbreeding: Specific Defects Escape Higher Risk Due to Parental Consanguinity. Cardiol. Young 2007, 17, 414–422. [Google Scholar] [CrossRef]
- Becker, S.M.; Al Halees, Z.; Molina, C.; Paterson, R.M. Consanguinity and Congenital Heart Disease in Saudi Arabia. Am. J. Med. Genet. 2001, 99, 8–13. [Google Scholar] [CrossRef]
- Hamamy, H. Consanguineous Marriages. J. Community Genet. 2012, 3, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Monies, D.; Abouelhoda, M.; AlSayed, M.; Alhassnan, Z.; Alotaibi, M.; Kayyali, H.; Al-Owain, M.; Shah, A.; Rahbeeni, Z.; Al-Muhaizea, M.A.; et al. The Landscape of Genetic Diseases in Saudi Arabia Based on the First 1000 Diagnostic Panels and Exomes. Hum. Genet. 2017, 136, 921–939. [Google Scholar] [CrossRef] [Green Version]
- El Mouzan, M.I.; Al Salloum, A.A.; Al Herbish, A.S.; Qurachi, M.M.; Al Omar, A.A. Consanguinity and Major Genetic Disorders in Saudi Children: A Community-Based Cross-Sectional Study. Ann. Saudi Med. 2008, 28, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, A.M.; Albawardi, N.M.; Ali, A.; Househ, S.M.; Elmetwally, A. The Epidemiology of Congenital Heart Diseases in Saudi Arabia: A Systematic Review. J. Public Health Epidemiol. 2015, 7, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Fahed, A.C.; Gelb, B.D.; Seidman, J.G.; Seidman, C.E. Genetics of Congenital Heart Disease: The Glass Half Empty. Circ. Res. 2013, 112, 707–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonarakis, S.E.; Lyle, R.; Dermitzakis, E.T.; Reymond, A.; Deutsch, S. Chromosome 21 and Down Syndrome: From Genomics to Pathophysiology. Nat. Rev. Genet. 2004, 5, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Bondy, C.A. Turner Syndrome 2008. Horm. Res. Paediatr. 2009, 71, 52–56. [Google Scholar] [CrossRef]
- Pont, S.J.; Robbins, J.M.; Bird, T.M.; Gibson, J.B.; Cleves, M.A.; Tilford, J.M.; Aitken, M.E. Congenital Malformations among Liveborn Infants with Trisomies 18 and 13. Am. J. Med. Genet. Part A 2006, 140, 1749–1756. [Google Scholar] [CrossRef]
- Al-Hassnan, Z.N.; Albawardi, W.; Almutairi, F.; AlMass, R.; AlBakheet, A.; Mustafa, O.M.; AlQuait, L.; Shinwari, Z.M.A.; Wakil, S.; Salih, M.A.; et al. Identification of Novel Genomic Imbalances in Saudi Patients with Congenital Heart Disease. Mol. Cytogenet. 2018, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Lamb, A.N.; Rosenfeld, J.A.; Neill, N.J.; Talkowski, M.E.; Blumenthal, I.; Girirajan, S.; Keelean-Fuller, D.; Fan, Z.; Pouncey, J.; Stevens, C.; et al. Haploinsufficiency of SOX5 at 12p12.1 Is Associated with Developmental Delays with Prominent Language Delay, Behavior Problems, and Mild Dysmorphic Features. Hum. Mutat. 2012, 33, 728–740. [Google Scholar] [CrossRef] [Green Version]
- Hussein, I.R.; Bader, R.S.; Chaudhary, A.G.; Bassiouni, R.; Alquaiti, M.; Ashgan, F.; Schulten, H.-J.; Al Qahtani, M.H. Identification of De Novo and Rare Inherited Copy Number Variants in Children with Syndromic Congenital Heart Defects. Pediatr. Cardiol. 2018, 39, 924–940. [Google Scholar] [CrossRef]
- Alharbi, K.M.; Al-Mazroea, A.H.; Abdallah, A.M.; Almohammadi, Y.; Carlus, S.J.; Basit, S. Targeted Next-Generation Sequencing of 406 Genes Identified Genetic Defects Underlying Congenital Heart Disease in Down Syndrome Patients. Pediatr. Cardiol. 2018, 39, 1676–1680. [Google Scholar] [CrossRef]
- Dasouki, M.J.; Wakil, S.M.; Al-Harazi, O.; Alkorashy, M.; Muiya, N.P.; Andres, E.; Hagos, S.; Aldusery, H.; Dzimiri, N.; Colak, D. New Insights into the Impact of Genome-Wide Copy Number Variations on Complex Congenital Heart Disease in Saudi Arabia. OMICS A J. Integr. Biol. 2020, 24, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, R.; Al Hashem, A.; Alghamdi, M.H.; Seidahmad, M.Z.; Wakil, S.M.; Dagriri, K.; Keavney, B.; Goodship, J.; Alyousif, S.; Al-Habshan, F.M.; et al. Positional Mapping of PRKD1, NRP1 and PRDM1 as Novel Candidate Disease Genes in Truncus Arteriosus. J. Med. Genet. 2015, 52, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Jaiyesimi, F.; Ruberu, D.K.; Misra, V.K. Pattern of Congenital Heart Disease in King Fahd Specialist Hospital, Buraidah. Ann. Saudi Med. 1993, 13, 407–411. [Google Scholar] [CrossRef] [PubMed]
- Baht, B.; Sheikh, A.; Khan, A.; Dad, M. Pattern of Congenital Heart Disease among Children in Madina Munawara. Saudi Heart Assoc. 1997, 9, 16–19. [Google Scholar]
- Abbag, F. Pattern of Congenital Heart Disease in the Southwestern Region of Saudi Arabia. Ann. Saudi Med. 1998, 18, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Greer, W.; Sandridge, A.L.; Al-Menieir, M.; Al Rowais, A. Geographical Distribution of Congenital Heart Defects in Saudi Arabia. Ann. Saudi Med. 2005, 25, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Alabdulgader, A.A.A. Congenital Heart Disease in 740 Subjects: Epidemiological Aspects. Ann. Trop. Paed. 2001, 21, 111–118. [Google Scholar] [CrossRef]
- Alqurashi, M.; Mouzan, M.E.; Herbish, A.A.; Salloum, A.A.; Omer, A. Symptomatic Congenital Heart Disease in the Saudi Children and Adolescents Project. Ann. Saudi Med. 2007, 27, 442–444. [Google Scholar]
- Alnajjar, A.A.; Morsy, M.-M.F.; Almuzainy, I.S.; Sheikh, A.A. Pediatric Heart Diseases in Madina, Saudi Arabia. Current Status and Future Expectations. Saudi Med. J. 2009, 30, 6. [Google Scholar]
- Almawazini, A.M.; Al-Ghamdi, A.S. Congenital Heart Disease in South-West Saudi Arabia. Saudi Med. J. 2011, 32, 195. [Google Scholar]
- Almawazini, A.M.; Hanafi, H.K.; Madkhali, H.A.; Majrashi, N.B. Effectiveness of the Critical Congenital Heart Disease Screening Program for Early Diagnosis of Cardiac Abnormalities in Newborn Infants. SMJ 2017, 38, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Khoshhal, S.Q.; Albasri, A.M.; Morsy, M.; Mofeed, F.; Alnajjar, A.A. The Trends and Patterns of Congenital Heart Diseases at Madinah Cardiac Center, Madinah, Saudi Arabia. SMJ 2020, 41, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Seliem, M.A.; Bou-Holaigah, I.H.; Al-Sannaa, N. Influence of Consanguinity on the Pattern of Familial Aggregation of Congenital Cardiovascular Anomalies in an Outpatient Population. Community Genet. 2007, 10, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.; Brueckner, M. Genetics and Genomics of Congenital Heart Disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef]
- Benson, D.W.; Silberbach, G.M.; Kavanaugh-McHugh, A.; Cottrill, C.; Zhang, Y.; Riggs, S.; Smalls, O.; Johnson, M.C.; Watson, M.S.; Seidman, J.G.; et al. Mutations in the Cardiac Transcription Factor NKX2.5 Affect Diverse Cardiac Developmental Pathways. J. Clin. Investig. 1999, 104, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Schott, J.-J.; Benson, D.W.; Basson, C.T.; Pease, W.; Silberbach, G.M.; Moak, J.P.; Maron, B.J.; Seidman, C.E.; Seidman, J.G. Congenital Heart Disease Caused by Mutations in the Transcription Factor NKX2-5. Sci. New Ser. 1998, 281, 108–111. [Google Scholar] [CrossRef]
- Sifrim, A.; Hitz, M.-P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.A.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct Genetic Architectures for Syndromic and Nonsyndromic Congenital Heart Defects Identified by Exome Sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef]
- Massadeh, S.; Albeladi, M.; Albesher, N.; Alhabshan, F.; Kampe, K.D.; Chaikhouni, F.; Kabbani, M.S.; Beetz, C.; Alaamery, M. Novel Autosomal Recessive Splice-Altering Variant in PRKD1 Is Associated with Congenital Heart Disease. Genes 2021, 12, 612. [Google Scholar] [CrossRef]
- Massadeh, S.; Alhashem, A.; Laar, I.M.B.H.; Alhabshan, F.; Ordonez, N.; Alawbathani, S.; Khan, S.; Kabbani, M.S.; Chaikhouni, F.; Sheereen, A.; et al. ADAMTS19—Associated Heart Valve Defects: Novel Genetic Variants Consolidating a Recognizable Cardiac Phenotype. Clin. Genet. 2020, 98, 56–63. [Google Scholar] [CrossRef]
- Bittles, A.H.; Black, M.L. Consanguineous Marriage and Human Evolution. Annu. Rev. Anthropol. 2010, 39, 193–207. [Google Scholar] [CrossRef]
- Massadeh, S.; Alhabshan, F.; AlSudairi, H.N.; Alkwai, S.; Alswailm, M.; Kabbani, M.S.; Chaikhouni, F.; Alaamery, M. The Role of the Disrupted Podosome Adaptor Protein (SH3PXD2B) in Frank–Ter Haar Syndrome. Genes 2022, 13, 236. [Google Scholar] [CrossRef]
- el-Hazmi, M.A.; al-Swailem, A.R.; Warsy, A.S.; al-Swailem, A.M.; Sulaimani, R.; al-Meshari, A.A. Consanguinity among the Saudi Arabian Population. J. Med. Genet. 1995, 32, 623–626. [Google Scholar] [CrossRef] [PubMed]
Study Reference | City | Study Setting | Data Collection Year | CHD Sample Size | Findings |
---|---|---|---|---|---|
Prevalence and Relative Frequency Studies | |||||
[21] | AlQassim | Hospital | 1988–1991 | 320 | Relative frequency of VSD (38.5%) was higher ASD (11.5%), Pulmonary Stenosis (PS) (9%), PDA (8%) and AVSD (5%) |
[22] | AlMadina | Hospital | 1992–1995 | 1209 | VSD (29.7%), ASD (26%), PS (16.1%) and PDA (13.2%) |
[23] | Asir | Hospital | 1994–1996 | 335 | VSD (32.5%), PDA (15.8%); ASD (10.4%); PS (10.1%); AVSD (3.6%) and mitral valve prolapse (3.6%); CoA (3.3%); obstructive aortic valve lesions (2.7%); TOF (4.5%); common ventricle (2.7%); PA with VSD (1.8%); D-transposition of the great arteries (1.5%); Ebstein anomaly (1.5%) and PA (1.2%). |
[24] | Nation-wide | National registry | 1998–2002 | 5865 | The Southwestern region exhibits the highest burden of CHD. AlBaha with a prevalence estimate of 748/100,000. |
[25] | Hofuf | Hospital | 1997–2000 | 740 | VSD was the most common defect (39.5%), followed by ASD (11.5%), PS (8.9%), PDA (8.6%), AVSD (3.5%), TOF (4.2%), CoA (2.7%), AS (3.5%) |
[26] | Nation-wide | Household | 2004–2005 | 95 | The highest prevalence in the central region (27/10000). Northern and Eastern had a prevalence of (25/10,000) while the Southwestern region had a prevalence of 21/10,000. VSD was the most common defect (10/10,000). |
[27] | AlMadina | Hospital | 2007–2008 | 4348 | CHD represents 34.4% of all cardiac problems. VSD represented 34.5% of all CHD diagnoses, followed by ASD (8.9%), PS (7.9%), PDA (6%), AVSD (3.8%), TOF (3%), AS (3.5%), CoA (2.8%), TGA (3.5%), and others (26%) |
[28] | Albaha | Hospital | 2005–2010 | 2610 | VSD (29.6%), PDA (9.5%), ASD (9.3%), PS (7.9%), AVSD (6.0%), TOF (4.7%), COA (3.4%), AS (3.0%), and TGA (1.9%) |
[4] | Riyadh | Hospital | 2010–2013 | 1179 CA cases | The birth prevalence of CA was 412/10 000 births, driven mainly by CHD (148/10,000). Isolated CHD found in 62.5%, distributed as VSD (28%), ASD (25.3%), PA and PS (6.8%) and severe CHD (20.4%) |
[29] | Albaha | Hospital | 2016–2017 | 2961 | CHD was diagnosed in 49 patients of the positive test group, (1.7%) distributed as 5 (0.2%) patients with VSD, and 44 (1.5%) patients with large symptomatic PDA. |
[30] | AlMadina | Hospital | 2017–2019 | 1127 | The acyanotic CHDs were the predominant lesions, accounting for 84.8% of all cases, while the cyanotic types accounted for 13%. PDA VSD, ASD, CoA and AVSD represented 27.9%, 24.8%, 18.9%, 6.4%, and 4.4% of the total cases, respectively. TOF (8.7%), followed by TGA (1.7%) and TA (1.1%), were the most common cyanotic CHDs. |
Consanguinity-Associated Studies | |||||
[7] | Riyadh | CHD Registry | 1998 | 949 | There was a significantly higher incidence of CHD among first-cousin marriages (41.6%) in comparison to the general population (28.4%). |
[31] | Riyadh | CHD Registry | 1998 | 891 | It was found that consanguinity was significantly higher in the sample (40.4%) than in the general population (28.4%). Some forms of CHD are significantly associated with consanguinity, such as VSD, ASD, AVSD, PA, and PS, but not TOF, TA, AS, COA, or PDA. |
[32] | Dhahran | Hospital | 1996–2000 | 37 families | There were 23 consanguineous marriages (62%) in these families. Dilated cardiomyopathy was more common in consanguineous marriages; 26 cases vs. 2 in non-consanguineous marriages |
[19] | Nation-wide | Household | 2004–2005 | 11,554 | CHD was the only disease associated with first cousin consanguinity in 56% of respondents. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albesher, N.; Massadeh, S.; Hassan, S.M.; Alaamery, M. Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia. Genes 2022, 13, 354. https://doi.org/10.3390/genes13020354
Albesher N, Massadeh S, Hassan SM, Alaamery M. Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia. Genes. 2022; 13(2):354. https://doi.org/10.3390/genes13020354
Chicago/Turabian StyleAlbesher, Nour, Salam Massadeh, Sabah M. Hassan, and Manal Alaamery. 2022. "Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia" Genes 13, no. 2: 354. https://doi.org/10.3390/genes13020354
APA StyleAlbesher, N., Massadeh, S., Hassan, S. M., & Alaamery, M. (2022). Consanguinity and Congenital Heart Disease Susceptibility: Insights into Rare Genetic Variations in Saudi Arabia. Genes, 13(2), 354. https://doi.org/10.3390/genes13020354