Chromosomal Location of Pm12—A Novel Powdery Mildew Resistance Gene from Avena sterilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mapping Population
2.2. Phenotyping—Resistance Tests
2.3. Genotyping and Linkage Map Construction
2.4. QTL Analysis
2.5. Chromosomal Localization and Gene Annotation Matching
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO FAOSTAT 2021. Available online: https://www.fao.org/faostat/en/#data (accessed on 20 June 2022).
- Banyal, D.K.; Sood, V.K.; Singh, A.; Mawar, R. Integrated management of oat diseases in north-western Himalaya. Range Manag. Agrofor. 2016, 37, 84–87. [Google Scholar]
- Xue, L.H.; Li, C.J.; Zhao, G.Q. First Report of Powdery Mildew Caused by Blumeria graminis on Avena sativa in China. Plant Dis. 2017, 101, 1954. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.; Pretorius, Z.; Hammond-Kosack, K.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, B.C. Diseases, pest and disorders of oat. In The Oat Crop; Welch, R.W., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 252–278. [Google Scholar]
- Roderick, H.W.; Jones, E.R.L.; Šebesta, J. Resistance to oat powdery mildew in Britain and Europe: A review. Ann. Appl. Biol. 2000, 136, 85–91. [Google Scholar] [CrossRef]
- Schwarzbach, E.; Smith, I.M. Erysiphe graminis DC. In European Handbook of Plant Diseases; Smith, I.M., Dunez, J., Lelliot, R.A., Philips, D.H., Archer, S.A., Eds.; Blackwell: Oxford, UK, 1988; pp. 259–261. [Google Scholar]
- Leath, S. Reaction of Winter Oat Germ Plasm to an Epidemic of Oat Powdery Mildew. Plant Dis. 1991, 75, 807. [Google Scholar] [CrossRef]
- Herrmann, M.H.; Mohler, V. Locating two novel genes for resistance to powdery mildew from Avena byzantina in the oat genome. Plant Breed. 2018, 137, 832–838. [Google Scholar] [CrossRef]
- Ociepa, T.; Okoń, S.; Nucia, A.; Leśniowska-Nowak, J.; Paczos-Grzęda, E.; Bisaga, M. Molecular identification and chromosomal localization of new powdery mildew resistance gene Pm11 in oat. Theor. Appl. Genet. 2020, 133, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Hsam, S.L.K.; Mohler, V.; Zeller, F.J. The genetics of resistance to powdery mildew in cultivated oats (Avena sativa L.): Current status of major genes. J. Appl. Genet. 2014, 55, 155–162. [Google Scholar] [CrossRef]
- Okoń, S.M. Effectiveness of resistance genes to powdery mildew in oat. Crop Prot. 2015, 74, 48–50. [Google Scholar] [CrossRef]
- Cieplak, M.; Terlecka, K.; Ociepa, T.; Zimowska, B.; Okoń, S. Virulence Structure of Blumeria graminis f. sp. avenae Populations in Poland across 2014–2015. Plant Pathol. J. 2021, 37, 115–123. [Google Scholar] [CrossRef]
- Okoń, S.M.; Chrzastek, M.; Kowalczyk, K.; Koroluk, A.; Chrząstek, M.; Kowalczyk, K.; Koroluk, A. Identification of new sources of resistance to powdery mildew in oat. Eur. J. Plant Pathol. 2014, 139, 9–12. [Google Scholar] [CrossRef]
- Okoń, S.; Paczos-Grzęda, E.; Ociepa, T.; Koroluk, A.; Sowa, S.; Kowalczyk, K.; Chrząstek, M. Avena sterilis L. Genotypes as a Potential Source of Resistance to Oat Powdery Mildew. Plant Dis. 2016, 100, 2145–2151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okoń, S.M.; Ociepa, T. Effectiveness of new sources of resistance against oat powdery mildew identified in A. sterilis. J. Plant Dis. Prot. 2018, 125, 505–510. [Google Scholar] [CrossRef] [Green Version]
- Okoń, S.; Cieplak, M.; Kuzdraliński, A.; Ociepa, T. New pathotype nomenclature for better characterisation the virulence and diversity of Blumeria graminis f. sp. avenae populations. Agronomy 2021, 11, 1852. [Google Scholar] [CrossRef]
- Mains, E.B. Inheritance of resistance to powdery mildew, Erysiphe graminis tritici, in wheat. Phytopathology 1934, 24, 1257–1261. [Google Scholar]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop. J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Bekele, W.A.; Wight, C.P.; Chao, S.; Howarth, C.J.; Tinker, N.A. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnol. J. 2018, 16, 1452–1463. [Google Scholar] [CrossRef] [Green Version]
- Krzywinski, M.I.; Schein, J.E.; Birol, I.; Connors, J.; Gascoyne, R.; Horsman, D.; Jones, S.J.; Marra, M.A. Circos: An information aesthetic for comparative genomics. Genome. Res. 2009, 19, 1639–1645. [Google Scholar] [CrossRef] [Green Version]
- Kilian, A.; Wenzl, P.; Huttner, E.; Carling, J.; Xia, L.; Blois, H.; Caig, V.; Heller-Uszynska, K.; Jaccoud, D.; Hopper, C.; et al. Diversity Arrays Technology: A Generic Genome Profiling Technology on Open Platforms; Humana Press: Totowa, NJ, USA, 2012; pp. 67–89. [Google Scholar]
- Piechota, U.; Czembor, P.C.; Słowacki, P.; Czembor, J.H. Identifying a novel powdery mildew resistance gene in a barley landrace from Morocco. J. Appl. Genet. 2019, 60, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Gawroński, P.; Pawełkowicz, M.; Tofil, K.; Uszyński, G.; Sharifova, S.; Ahluwalia, S.; Tyrka, M.; Wędzony, M.; Kilian, A.; Bolibok-Brągoszewska, H. DArT markers effectively target gene space in the rye genome. Front. Plant Sci. 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Korchanová, Z.; Švec, M.; Janáková, E.; Lampar, A.; Majka, M.; Holušová, K.; Bonchev, G.; Juračka, J.; Cápal, P.; Valárik, M. Identification, High-Density Mapping, and Characterization of New Major Powdery Mildew Resistance Loci From the Emmer Wheat Landrace GZ1. Front. Plant Sci. 2022, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barilli, E.; Cobos, M.J.; Carrillo, E.; Kilian, A.; Carling, J.; Rubiales, D. A high-density integrated DArTseq SNP-based genetic map of pisum fulvum and identification of QTLs controlling rust resistance. Front. Plant Sci. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mohler, V. Allocation of the oat powdery mildew resistance gene Pm3 to oat chromosome 1A. Cereal. Res. Commun. 2021, 50, 1–8. [Google Scholar] [CrossRef]
- Mohler, V.; Zeller, F.J.; Hsam, S.L.K. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo). J. Appl. Genet. 2012, 53, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Chaffin, A.S.; Huang, Y.-F.; Smith, S.; Bekele, W.A.; Babiker, E.; Gnanesh, B.N.; Foresman, B.J.; Blanchard, S.G.; Jay, J.J.; Reid, R.W.; et al. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement. Plant Genome. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Herrmann, M. Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theor. Appl. Genet. 2006, 113, 429–437. [Google Scholar] [CrossRef]
- Hsam, S.L.K.; Paderina, E.V.; Gordei, S.; Zeller, F.J. Genetic studies of powdery mildew resistance in cultivated oat (Avena sativa L.) II. Cultivars and breeding lines grown in Northern and Eastern Europe. Hereditas 1998, 230, 227–230. [Google Scholar] [CrossRef]
- Hsam, S.L.K.; Peters, N.; Paderina, E.V.; Felsenstein, F.; Oppitz, K.; Zeller, F.J. Genetic studies of powdery mildew resistance in common oat (Avena sativa L.) I. Cultivars and breeding lines grown in Western Europe and North America. Euphytica 1997, 96, 421–427. [Google Scholar] [CrossRef]
- Cieplak, M.; Nucia, A.; Ociepa, T.; Okoń, S. Virulence Structure and Genetic Diversity of Blumeria graminis f. sp. avenae from Different Regions of Europe. Plants 2022, 11, 1358. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Poland, J.A.; Wight, C.P.; Jackson, E.W.; Tinker, N.A. Using Genotyping-By-Sequencing (GBS) for Genomic Discovery in Cultivated Oat. PLoS ONE 2014, 9, e102448. [Google Scholar] [CrossRef] [Green Version]
- PepsiCo Avena sativa-OT3098 v2, 2021. Available online: https://wheat.pw.usda.gov/jb?data=/ggds/oat-ot3098v2-pepsico (accessed on 1 June 2022).
- Yuan, J.; Liu, T.; Yu, Z.; Li, Y.; Ren, H.; Hou, X.; Li, Y. Genome-wide analysis of the Chinese cabbage IQD gene family and the response of BrIQD5 in drought resistance. Plant Mol. Biol. 2019, 99, 603–620. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, C.B.; Basu, S.; Pereira, A.; Tseng, T.M.; Zimmer, P.D.; Burgos, N.R. Analysis of stress-responsive gene expression in cultivated and weedy rice differing in cold stress tolerance. PLoS ONE 2015, 10, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, L.; Shi, C.; Tian, Q.; Lv, G.; Wang, Y.; Cui, D.; Chen, F. Comprehensive profiling of lysine ubiquitome reveals diverse functions of lysine ubiquitination in common wheat. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [PubMed]
F2 Population (Fuchs × CN67383) | F3 Population (Fuchs × CN67383) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Powdery Mildew Isolates | Resistant | Susceptible | χ2 3:1 | p-Value | Resistant | Segregating | Susceptible | χ2 1:2:1 | p-Value |
CHR | 127 | 40 | 0.127 | 0.721 | 42 | 85 | 40 | 0.143 | 0.930 |
CZE | 126 | 41 | 0.032 | 0.858 | 39 | 87 | 41 | 0.431 | 0.806 |
Linkage Groups of Fuchs × CN67383 Genetic Map | Matching to Merged Groups of Bekele et al. Consensus Map | Number of Markers in Each Linkage Group of Fuchs × CN67383 Genetic Map | Length [cM] |
---|---|---|---|
LG1 | Mrg12 | 111 | 765.2 |
LG2 | Mrg33 | 135 | 939.07 |
LG3 | Mrg18 | 197 | 1188.23 |
LG4 | Mrg03 | 222 | 1438.25 |
LG5 | Mrg23 | 122 | 623.59 |
LG6 | Mrg17 | 266 | 1590.88 |
LG7 | Mrg06 | 214 | 1216.61 |
LG8 | Mrg28 | 142 | 717.75 |
LG9 | Mrg09 | 231 | 1081.67 |
LG10 | Mrg04 | 90 | 412.37 |
LG11 | Mrg08 | 178 | 1141.89 |
LG12 | Mrg11 | 249 | 1425.05 |
LG13 | Mrg13 | 226 | 988.75 |
LG14 | Mrg01 | 290 | 1853.45 |
LG15 | Mrg05 | 165 | 1138.56 |
LG16 | Mrg15 | 225 | 1434.57 |
LG17 | Mrg20 | 224 | 1752.05 |
LG18 | Mrg19 | 122 | 668.99 |
LG19 | Mrg02 | 122 | 899.02 |
LG20 | Mrg21 | 259 | 1568.67 |
LG21 | Mrg24 | 199 | 1365.34 |
TOTAL | 3989 | 24,209.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ociepa, T.; Okoń, S. Chromosomal Location of Pm12—A Novel Powdery Mildew Resistance Gene from Avena sterilis. Genes 2022, 13, 2409. https://doi.org/10.3390/genes13122409
Ociepa T, Okoń S. Chromosomal Location of Pm12—A Novel Powdery Mildew Resistance Gene from Avena sterilis. Genes. 2022; 13(12):2409. https://doi.org/10.3390/genes13122409
Chicago/Turabian StyleOciepa, Tomasz, and Sylwia Okoń. 2022. "Chromosomal Location of Pm12—A Novel Powdery Mildew Resistance Gene from Avena sterilis" Genes 13, no. 12: 2409. https://doi.org/10.3390/genes13122409
APA StyleOciepa, T., & Okoń, S. (2022). Chromosomal Location of Pm12—A Novel Powdery Mildew Resistance Gene from Avena sterilis. Genes, 13(12), 2409. https://doi.org/10.3390/genes13122409