ITS1 Barcode and Phytochemical Analysis by Gas Chromatography–Mass Spectrometry of Corynaea crassa Hook. f (Balanophoraceae) from Ecuador and Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material
2.2. Phylogenetic Analysis
2.2.1. DNA Extraction
2.2.2. PCR
2.2.3. Bioinformatic Analysis
2.3. Phytochemical Analysis
2.3.1. Preparation of Extracts
2.3.2. Gas Chromatography–Mass Spectrometry Analysis (GC-MS)
3. Results
3.1. Phylogenetic Analysis
3.2. Phytochemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez, M.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. DNA-Based Authentication and Metabolomics Analysis of Medicinal Plants Samples by DNA Barcoding and Ultra-High-Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry (UHPLC-MS). Plants 2020, 9, 1601. [Google Scholar] [CrossRef] [PubMed]
- Malabika, R.; Abdulaziz, M.; Muhammad, F. DNA Barcoding and Identification of Medicinal Plants in the Kingdom of Bahrain. Am. J. Plant Sci. 2018, 9, 2757–2774. [Google Scholar]
- Che, H.; Che, N.; Naim, D.; Almad, M. Authentication of a selected medicinal plants using DNA barcoding technique. SHS Web Conf. 2018, 45, 05004. [Google Scholar]
- Bussmann, R.W.; Glenn, A. Medicinal plants used in Northern Peru for reproductive problems and female health. J. Ethnobiol. Ethnomedicine 2010, 6, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malca, G.; Henning, L.; Sieler, J.; Bussmann, R. Constituents of Corynaea crassa “Peruvian Viagra”. Rev. Bras. Farmacogn. 2015, 25, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, L.O.A. Balanophoraceae. Flora de Guerrero. 69; Facultad de Ciencias, UNAM: Mexico City, Mexico, 2016; pp. 4–11. [Google Scholar]
- Imarhiagbe, O.; Aigbokhan, E.I. Studies on Thonningia sanguinea VAHL. (Balanophoraceae) in southern Nigeria. Range and host preference. Int. J. Conserv. Sci. 2019, 10, 721–732. [Google Scholar]
- López, B.A.J.; Gutiérrez, G.Y.I.; Miranda, M.M.; Choez, G.I.A.; Ruíz, R.S.G.; Scull, L.R. Pharmacognostic, Phytochemical, and Anti-Inflammatory Effects of Corynaea crassa: A Comparative Study of Plants from Ecuador and Peru. Pharmacogn. Res. 2020, 12, 394–402. [Google Scholar] [CrossRef]
- López, B.A.J.; Gutiérrez, G.Y.I.; Miranda, M.M. Phytochemical Profile and Antioxidant Activity of Hydroalcoholic Extracts of Corynaea crassa Hook. f (Balanophoraceae). Trop. J. Nat. Prod. Res. 2021, 5, 1340–1347. [Google Scholar]
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; de Waard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Pawar, R.S.; Handy, S.M.; Cheng, R.; Shyong, N.; Grundel, E. Assessment of the Authenticity of Herbal Dietary Supplements: Comparison of Chemical and DNA Barcoding Methods. Planta Med. 2017, 83, 921–936. [Google Scholar] [CrossRef] [Green Version]
- Hashim, A.M.; Alatawi, A.; Altaf, F.M.; Qari, S.H.; Elhady, M.E.; Osman, G.H.; Abouseadaa, H.H. Phylogenetic relationships and DNA barcoding of nine endangered medicinal plant species endemic to Saint Katherine protectorate. Saudi J. Biol. Sci. 2021, 28, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Pacheco Coello, R.; Pestana Justo, J.; Factos Mendoza, A.; Santos Ordoñez, E. Comparison of three DNA extraction methods for the detection and quantification of GMO in Ecuadorian manufactured food. BMC Res. Notes 2017, 10, 758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Yao, H.; Han, J.; Liu, C.; Song, J.; Shi, L.; Zhu, Y.; Ma, X.; Gao, T.; Pang, X.; et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 2010, 5, e8613. [Google Scholar] [CrossRef]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.M.; Cuéllar, A.C. Manual de Prácticas de Laboratorio; Farmacognosia y Productos Naturales: Ciudad Habana, Cuba, 2000; pp. 56–57. [Google Scholar]
- Saitta, M.; Curto, S.L.; Salvo, F.; Di Bella, G.; Dugo, G. Gas chromatographic-tandem mass spectrometric identification of phenolic compounds in Sicilian olive oils. Anal. Chim. Acta 2002, 466, 335–344. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kumari, R.; Kotecha, M. A review on the Standardization of herbal medicines. Int. J. Pharma Sci. Res. 2016, 7, 97–106. [Google Scholar]
- Nithaniyal, S.; Vassou, S.; Poovitha, S.; Raju, B.; Parani, M.; Cristescu, M. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding. Genome 2017, 60, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Rajphriyadharshini, R.; Weerasena, O.V.D.S.J. DNA Barcoding of Medicinal plant: A Systemic Review. Int. J. Pharm. Sci. Invent. 2020, 9, 06–16. [Google Scholar] [CrossRef]
- Veldman, S.; Ju, Y.; Otieno, J.N.; Abihudi, S.; Posthouwer, C.; Gravendeel, B.; van Andel, T.R.; de Boer, H.J. DNA barcoding augments conventional methods for identification of medicinal plant species traded at Tanzanian markets. J. Ethnopharmacol. 2019, 250, 112495. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Bhandari, T.; Pradhan, A.; Ghimire, N.; Basnet, S.; Pandey, S.; Lamichhane, J. DNA barcoding, phytochemical screening and antimicrobial activity of Rhododendron arboreum, a high altitudinal medicinal plant from Nepal. Eurasian J. For. Sci. 2020, 8, 140–151. [Google Scholar] [CrossRef]
- CBOL Plant Working Group. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 2009, 106, 12794–12797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, K. From chloroplasts to “cryptic” plastids: Evolution of plastid genomes in parasitic plants. Curr. Genet. 2008, 54, 111–121. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.C.; Qiao, Q.; Ren, Z.; Zhao, J.; Yonezawa, T.; Hasegawa, M.; Crabbe, M.J.; Li, J.; Zhong, Y. Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PLoS ONE 2013, 8, e58747. [Google Scholar] [CrossRef]
- Wicke, S.; Müller, K.F.; dePamphilis, C.W.; Quandt, D.; Wickett, N.J.; Zhang, Y.; Renner, S.S.; Schneeweiss, G.M. Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 2013, 25, 3711–3725. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.; Hazzouri, K.M.; Nickrent, D.; Geisler, M.; Meyer, R.S.; Pentony, M.M.; Flowers, J.M.; Pelser, P.; Barcelona, J.; Inovejas, S.A.; et al. Possible loss of the chloroplast genome in the parasitic flowering plant Rafflesia lagascae (Rafflesiaceae). Mol. Biol. Evol. 2014, 31, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, I.; Wendel, J.F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenetics Evol. 2003, 29, 417–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protoc. Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Techen, N.; Parveen, I.; Pan, Z.; Khan, I.A. DNA barcoding of medicinal plant material for identification. Curr. Opin. Biotechnol. 2014, 25, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jiang, B.; Duan, L.; Zhou, N. Internal transcribed spacer (ITS), an ideal DNA barcode for species discrimination in Crawfurdia Wall. (Gentianaceae). Afr. J. Tradit. Complement. Altern. Med. 2016, 13, 101–106. [Google Scholar] [CrossRef]
- Bustamante, K.; Santos-Ordóñez, E.; Miranda, M.; Pacheco, R.; Gutiérrez, Y.; Scull, R. Morphological and molecular barcode analysis of the medicinal tree Mimusops coriacea (A.DC.) Miq. collected in Ecuador. PeerJ 2019, 7, e7789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarmiento-Tomalá, G.; Santos-Ordóñez, E.; Miranda-Martínez, M.; Pacheco Coello, R.; Scull-Lizama, R.; Gutiérrez-Gaitén, Y.; Delgado Hernández, R. Short communication: Molecular barcode and morphology analysis of Malva pseudolavatera Webb & Berthel and Malva sylvestris L. from Ecuador. Biodiversitas 2020, 21, 3554–3561. [Google Scholar]
- Soledispa, P.; Santos-Ordóñez, E.; Miranda, M.; Pacheco, R.; Gutiérrez Gaiten, Y.I.; Scull, R. Molecular barcode and morphological analysis of Smilax purhampuy Ruiz, Ecuador. PeerJ 2021, 9, e11028. [Google Scholar] [CrossRef] [PubMed]
- Ogunwande, I.A.; Avoseh, O.; Flamini, G.; Hassan, A.-S.O.; Ogunmoye, A.O.; Ogunsanwo, A.O.; Yusuf, K.O.; Kelechi, A.O.; Tiamiyu, Z.A.; Tabowei, G.O. Essential Oils from the Leaves of Six Medicinal Plants of Nigeria. Nat. Prod. Commun. 2013, 8, 243–248. [Google Scholar] [CrossRef]
- Akande, A.; Aboaba, S.; Flamini, G. Constituents and Anthelmintic Activity Evaluation of Albizia Adiantifolia (Schumach) W.F. Wright Essential Oils From Nigeria. Int. J. Chem. 2018, 10, 10–15. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, L.; Mellouki, A.; Daële, V.; Idir, M.; Brown, S.S.; Ruscic, B.; Paton, R.S.; McGillen, M.R.; Ravishankara, A.R. Reactions of NO3 with Aromatic Aldehydes: Gas Phase Kinetics and Insights into the Mechanism of the Reaction. Atmos. Chem. Phys. 2021, 21, 13537–13551. [Google Scholar] [CrossRef]
- Tupac, J.; Mora, M.; Costa, J.F. First host record for the root parasite Corynaea crassa (Balanophoraceae). Acta Biol. Colomb. 2009, 14, 199–204. [Google Scholar]
- Zargoosh, Z.; Ghavam, M.; Bacchetta, G.; Tavili, A. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci. Rep. 2019, 9, 16021. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Tang, X.; Jia, Z.; Li, C.; Ma, J.; Zhang, J. The effects of ecological factors on the main medicinal components of Dendrobium offcinale under different cultivation modes. Forests 2020, 11, 94. [Google Scholar] [CrossRef]
BLAST | ||||||
---|---|---|---|---|---|---|
C. crassa Source | Code | Organism | Accession | Query Cover (Query Length) | E-Value | Identity |
Ecuador | CIBE-18 | Helosis cayennensis (Sw.) Spreng | KT709670 | 24% (676 bp) | 2 × 10−56 | 92.22% |
Ecuador | CIBE-17 | H. cayennensis (Sw.) Spreng | KT709670 | 24% (677 bp) | 2 × 10−56 | 92.22% |
Peru | CIBE-13 | Helosis brasiliensis | KT709669 | 39% (715 bp) | 6 × 10−66 | 83.97% |
Peru | CIBE-14 | H. brasiliensis | KT709669 | 43% (651 bp) | 6 × 10−66 | 83.97% |
Peru | CIBE-15 | H. brasiliensis | KT709669 | 42% (664 bp) | 6 × 10−66 | 83.97% |
RT (min) | Compounds | RA (%) * | ||
---|---|---|---|---|
Ecuador | Peru | |||
1 | 11.34 | 2,4-Dimethylbenzaldehyde | 11.98/0.50 | 18.07/0.88 |
2 | 12.06 | Benzoic acid | 0.39/0.05 | 0.45/0.06 |
3 | 12.74 | Phosphoric acid | 6.21/0.06 | 5.86/0.80 |
4 | 13.91 | Butanedioic acid | 0.99/0.06 | 0.96/0.13 |
5 | 17.83 | Eugenol | 0.53/0.03 | - |
6 | 21.73 | Arabinonic acid, 1,4-lactone | 0.17/0.04 | - |
7 | 25.34 | Azelaic acid | - | 0.24/0.03 |
8 | 25.69 | D-Psicofuranose | 1.03/0.07 | 0.66/0.04 |
9 | 25.79 | Protocatechuic acid | - | 0.31/0.02 |
10 | 26.43 | Tetradecanoic acid | 0.79/0.04 | 0.74/0.06 |
11 | 28.57 | Gallic acid | 0.54/0.12 | 0.40/0.14 |
12 | 30.30 | Hexadecanoic acid | 5.21/0.14 | 5.95/0.43 |
13 | 30.88 | Oleanitrile | 1.18/0.09 | 1.76/0.12 |
14 | 33.24 | 9,12-octadecadienoic acid | 0.99/0.17 | 0.70/0.12 |
15 | 33.36 | Oleic acid | 2.29/0.25 | 2.19/0.27 |
16 | 33.49 | 11-cis-octadecenoic acid | 0.53/0.03 | 0.60/0.05 |
17 | 33.85 | Octadecanoic acid | 7.68/0.24 | 8.34/0.64 |
18 | 36.61 | 9-octadecenamide | - | 3.70/0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Barrera, A.; Santos-Ordóñez, E.; Pacheco-Coello, R.; Villao-Uzho, L.; Miranda, M.; Gutiérrez, Y.; Chóez-Guaranda, I.; Ruiz-Reyes, S.G. ITS1 Barcode and Phytochemical Analysis by Gas Chromatography–Mass Spectrometry of Corynaea crassa Hook. f (Balanophoraceae) from Ecuador and Peru. Genes 2023, 14, 88. https://doi.org/10.3390/genes14010088
López-Barrera A, Santos-Ordóñez E, Pacheco-Coello R, Villao-Uzho L, Miranda M, Gutiérrez Y, Chóez-Guaranda I, Ruiz-Reyes SG. ITS1 Barcode and Phytochemical Analysis by Gas Chromatography–Mass Spectrometry of Corynaea crassa Hook. f (Balanophoraceae) from Ecuador and Peru. Genes. 2023; 14(1):88. https://doi.org/10.3390/genes14010088
Chicago/Turabian StyleLópez-Barrera, Alexandra, Efrén Santos-Ordóñez, Ricardo Pacheco-Coello, Liliana Villao-Uzho, Migdalia Miranda, Yamilet Gutiérrez, Iván Chóez-Guaranda, and Segundo Guillermo Ruiz-Reyes. 2023. "ITS1 Barcode and Phytochemical Analysis by Gas Chromatography–Mass Spectrometry of Corynaea crassa Hook. f (Balanophoraceae) from Ecuador and Peru" Genes 14, no. 1: 88. https://doi.org/10.3390/genes14010088
APA StyleLópez-Barrera, A., Santos-Ordóñez, E., Pacheco-Coello, R., Villao-Uzho, L., Miranda, M., Gutiérrez, Y., Chóez-Guaranda, I., & Ruiz-Reyes, S. G. (2023). ITS1 Barcode and Phytochemical Analysis by Gas Chromatography–Mass Spectrometry of Corynaea crassa Hook. f (Balanophoraceae) from Ecuador and Peru. Genes, 14(1), 88. https://doi.org/10.3390/genes14010088