Genetic Polymorphisms of Cytochromes P450 in Finno-Permic Populations of Russia
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeng, W.; Li, Y.; Lu, E.; Ma, M. CYP 1A1 rs1048943 and rs4646903 polymorphisms associated with laryngeal cancer susceptibility among Asian populations: A meta-analysis. J. Cell. Mol. Med. 2016, 20, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Hoidy, W.H.; Jaber, F.A.; Al-Askiry, M.A. Association of CYP1A1 rs1048943 Polymorphism with Prostate Cancer in Iraqi Men Patients. Asian Pac. J. Cancer Prev. 2019, 20, 3839–3842. [Google Scholar] [CrossRef] [PubMed]
- Ibrahem, S.Q.; Al-Dalawi, Z.T.; Bahaaldin, A.S. Sequence Polymorphism in Xenobiotic Metabolising Genes in Iraqi Colorectal Cancer Patients. Asian Pac. J. Cancer Prev. 2021, 22, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, Z.; He, J.; Wang, W.; Xue, W.; Wang, Y.; Zheng, L.; Zhu, M.-L. Associations between CYP1A1 rs1048943 A > G and rs4646903 T > C genetic variations and colorectal cancer risk: Proof from 26 case-control studies. Oncotarget 2016, 7, 51365–51374. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, D.; Guha, U.; Mitra, S.; Ghosh, S.; Bhattacharjee, S.; Sengupta, M. Meta-Analysis of Polymorphic Variants Conferring Genetic Risk to Cervical Cancer in Indian Women Supports CYP1A1 as an Important Associated Locus. Asian Pac. J. Cancer Prev. 2018, 19, 2071–2081. [Google Scholar] [PubMed]
- Sengupta, D.; Banerjee, S.; Mukhopadhyay, P.; Mitra, R.; Chaudhuri, T.; Sarkar, A.; Bhattacharjee, G.; Nath, S.; Roychoudhury, S.; Bhattacharjee, S.; et al. A comprehensive meta-analysis and a case–control study give insights into genetic susceptibility of lung cancer and subgroups. Sci. Rep. 2021, 11, 14572. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, H.; Guo, P.; Shen, R.; Luo, Y.; Ge, Q.; Shi, W.; Li, Y.; Zhu, W. The effect of CYP2D6* 10 polymorphism on adjuvant tamoxifen in Asian breast cancer patients: A meta-analysis. OncoTargets Ther. 2017, 10, 5429–5437. [Google Scholar] [CrossRef]
- Haduch, A.; Daniel, W.A. The engagement of brain cytochrome P450 in the metabolism of endogenous neuroactive substrates: A possible role in mental disorders. Drug Metab. Rev. 2018, 50, 415–429. [Google Scholar] [CrossRef]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus guidelines for therapeutic drug monitoring in neuropsycho-pharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar]
- Gaedigk, A.; Sangkuhl, K.; Whirl-Carrillo, M.; Klein, T.; Leeder, J.S. Prediction of CYP2D6 phenotype from genotype across world populations. Anesthesia Analg. 2017, 19, 69–76. [Google Scholar] [CrossRef]
- Kikuchi, R.; McCown, M.; Olson, P.; Tateno, C.; Morikawa, Y.; Katoh, Y.; Bourdet, D.L.; Monshouwer, M.; Fretland, A.J. Effect of Hepatitis C Virus Infection on the mRNA Expression of Drug Transporters and Cytochrome P450 Enzymes in Chimeric Mice with Humanized Liver. Drug Metab. Dispos. 2010, 38, 1954–1961. [Google Scholar] [CrossRef] [PubMed]
- Kirby, G.M.; Chemin, I.; Montesano, R.; Chisari, F.V.; Lang, M.A.; Wild, C.P. Induction of specific cytochrome P450s involved in aflatoxin B1 metabolism in hepatitis B virus transgenic mice. Mol. Carcinog. 1994, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Fakhouri, E.W.; Peterson, S.J.; Kothari, J.; Alex, R.; Shapiro, J.I.; Abraham, N.G. Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm. Antioxidants 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Vinayagamoorthy, N.; Han, K.; Kwok, S.K.; Ju, J.H.; Park, K.S.; Jung, S.H.; Park, S.W.; Chung, Y.J.; Park, S.H.; et al. Association of polymorphisms of cytochrome P450 2D6 with blood hy-droxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2016, 68, 184–190. [Google Scholar] [CrossRef]
- Stevenson, J.M.; Alexander, G.C.; Palamuttam, N.; Mehta, H.B. Projected Utility of Pharmacogenomic Testing among Individuals Hospitalized with COVID-19: A Retrospective Multicenter Study in the United States. Clin. Transl. Sci. 2020, 14, 153–162. [Google Scholar] [CrossRef]
- Klementiev, E.I.; Shlygina, N.V. Baltic-Finnish Peoples of Russia; Nauka: Moscow, Russia, 2003; p. 670. [Google Scholar]
- Mokshin, N.F.; Fedyanovich, T.P.; Khristolyubova, L.S. The Peoples of the Volga and Ural Regions; Komi-Zyrians. Komi-Permyaks. Mari. Mordva. Udmurts; Mokshin, N.F., Fedyanovich, T.P., Khristolyubova, L.S., Eds.; Nauka: Moscow, Russia, 2000; p. 579. [Google Scholar]
- Tambets, K.; Yunusbayev, B.; Hudjashov, G.; Ilumäe, A.-M.; Rootsi, S.; Honkola, T.; Vesakoski, O.; Atkinson, Q.; Skoglund, P.; Kushniarevich, A.; et al. Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biol. 2018, 19, 139. [Google Scholar] [CrossRef]
- Mathew, C.G.P. The Isolation of High Molecular Weight Eukaryotic DNA. Methods Mol. Biol. 1985, 2, 31–34. [Google Scholar]
- The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef]
- Veresh, P.K. On the Issue of the Finno-Ugric Ancestral Home and the Ethnogenesis of the Hungarians in the Light of the Latest Paleontological Data; Studia Hungarica VI MKFU: Syktyvkar, Russia, 1985. [Google Scholar]
- Kuzeev, R.G. Peoples of the Middle Volga and Southern Urals: An Ethnogenetic View of History; Nauka: Moscow, Russia, 1992; p. 347. [Google Scholar]
- Kh Khalikov, A. Ancient History of the Middle Volga Region; Science: Moscow, Russia, 1969; p. 396. [Google Scholar]
- Korytina, G.; Kochetova, O.; Akhmadishina, L.; Viktorova, E.; Victorova, T. Polymorphisms of cytochrome P450 genes in three ethnic groups from Russia. Balk. Med. J. 2012, 2012, 252–260. [Google Scholar] [CrossRef]
- Dzhaubermezov, M.A.; Mingazheva, E.T.; Axberg, D.S.; Ekomasova, N.V.; Khusnutdinova, E.K. Polymorphism of the cytochrome P450 CYP1A1 (Ile462Val) gene in the populations of Balkars and Karachays. Ecol. Genet. 2021, 19, 273–279. [Google Scholar] [CrossRef]
- Nakachi, K.; Imai, K.; Hayashi, S.; Kawajiri, K. Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res. 1993, 53, 2994–2999. [Google Scholar] [PubMed]
- Chen, J.; Cheng, M.; Li, Y.; Jiang, C. Relationship between CYP1A1 genetic polymorphisms and renal cancer in China. Asian Pac. J. Cancer Prev. 2011, 12, 2163–2166. [Google Scholar] [PubMed]
- Tiis, R.P.; Osipova, L.P.; Churkina, T.; Tabikhanova, L.; Lichman, D.V.; Voronina, E.N.; Filipenko, M.L. The ILE462VAL polymorphism of the cytochrome P450 CYP1A1 gene in the Tundra Nenets of the Yamalo-Nenets Autonomous Okrug, Nganasans of the Taimyr Peninsula, and Russians of Siberia. Russ. J. Genet. Appl. Res. 2016, 6, 864–870. [Google Scholar] [CrossRef]
- Tabikhanova, L.E.; Osipova, L.P.; Churkina, T.; Voronina, E.N.; Filipenko, M.L. Genetic polymorphism of CYP1A1 and CYP2D6 in populations of Buryats, Teleuts and Russians of Eastern Siberia. Vavilov J. Genet. Breed. 2018, 22, 205–211. [Google Scholar] [CrossRef]
- Massabayeva, M.; Chaizhunusova, N.; Aukenov, N.; Bulegenov, T.; Apsalikov, B.; Shapihanova, A.; Zhunussov, Y. Association of radiation risk in the second and third generations with polymorphisms in the genes CYP1A1, CYP2E1, GSTP1 and changes in the thyroid. Mol. Med. 2019, 25, 48. [Google Scholar] [CrossRef] [PubMed]
- Elhawary, N.A.; Nassir, A.; Saada, H.; Dannoun, A.; Qoqandi, O.; Alsharif, A.; Tayeb, M.T. Combined Genetic Biomarkers Confer Susceptibility to Risk of Urothelial Bladder Carcinoma in a Saudi Population. Dis. Markers 2017, 2017, 1474560. [Google Scholar] [CrossRef] [PubMed]
- Sindi, I.A.; Babalghith, A.O.; Tayeb, M.T.; Mufti, A.H.; Naffadi, H.; Ekram, S.N.; Elhawary, E.N.; Alanezi, M.; Elhawary, N.A. Risk of Colorectal Carcinoma May Predispose to the Genetic Variants of the GST, CYP450, and TP53 Genes among Nonsmokers in the Saudi Community. Int. J. Gen. Med. 2021, 14, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Johnson, J.A. Pharmacogenetics of beta-blockers. Pharmacotherapy 2007, 27, 874–887. [Google Scholar] [CrossRef]
Sub-Branch of Finno-Permic Languages | Language Group | Language Sub-Group | Populations Included in the Study | N |
---|---|---|---|---|
Finno-Permic sub-branch | Permic | - | Udmurt | 96 |
Besermyan | 94 | |||
Komi | 94 | |||
Finno-Volga | Mordovian | Erzya | 78 | |
Moksha | 35 | |||
Baltic-Finnish | Karelian | 60 | ||
Veps | 60 |
Population | N | AA | AG | GG | Minor Allele Frequency (95% CI) | χ2 | Deviations from HWE, p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | |||||
Veps | 60 | 55 | 55.1 | 91.67 | 5 | 4.8 | 8.33 | 0 | 0.1 | 0 | 4.17% (1.36–9.45) | 0.113 | 0.736 |
Karelian | 60 | 55 | 55.1 | 91.67 | 5 | 4.8 | 8.33 | 0 | 0.1 | 0 | 4.17% (1.36–9.45) | 0.113 | 0.736 |
Udmurt | 96 | 85 | 85.3 | 88.54 | 11 | 10.4 | 11.46 | 0 | 0.3 | 0 | 5.73% (2.89–10.02) | 0.354 | 0.551 |
Bessermyan | 94 | 90 | 90 | 95.74 | 4 | 3.9 | 4.26 | 0 | 0 | 0 | 2.13% (0.58–5.36) | 0.044 | 0.833 |
Mordovian (total) | 136 | 128 | 126.2 | 94.12 | 6 | 9.6 | 4.41 | 2 | 0.2 | 1.47 | 3.68% (1.78–6.66) | 19.340 | 0.00001 |
Erzya | 78 | 75 | 75 | 96.15 | 3 | 2.9 | 3.85 | 0 | 0 | 0 | 1.92% (0.40–5.52) | 0.03 | 0.862 |
Moksha | 35 | 32 | 31.1 | 91.43 | 2 | 3.8 | 5.71 | 1 | 0.1 | 2.86 | 5.71% (1.58–13.99) | 7.721 | 0.005 |
Komi (total) | 94 | 89 | 88.1 | 94.68 | 4 | 5.8 | 4.26 | 1 | 0.1 | 1.06 | 3.19% (1.18–6.82) | 9.113 | 0.002 |
Izhemsk | 47 | 44 | 44 | 93.62 | 3 | 2.9 | 6.38 | 0 | 0 | 0 | 3.19% (0.66–9.04) | 0.051 | 0.821 |
Syktyvdinsk | 47 | 45 | 44 | 95.74 | 1 | 2.9 | 2.13 | 1 | 0 | 2.13 | 3.19% (0.66–9.04) | 20.20 | 0.000007 |
Population | N | Minor allele Frequency% | Veps | Karelian | Mordovian (Total) | Erzya | Moksha | Udmurt | Komi (Total) | Izhemsk | Syktyvdinsk | Bessermyan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Veps | 60 | 4.17% | 0.747 | 0.958 | 0.459 | 0.896 | 0.730 | 0.893 | 0.992 | 0.992 | 0.491 | |
Karelian | 60 | 4.17% | 0.747 | 0.958 | 0.459 | 0.896 | 0.730 | 0.893 | 0.992 | 0.992 | 0.491 | |
Mordovian (total) | 136 | 3.68% | 0.958 | 0.958 | 0.412 | 0.984 | 0.917 | 0.917 | 0.500 | |||
Erzya | 78 | 1.92% | 0.460 | 0.460 | 0.269 | 0.128 | 0.693 | 0.835 | 0.835 | 0.803 | ||
Moksha | 35 | 5.71% | 0.896 | 0.896 | 0.269 | 0.767 | 0.568 | 0.689 | 0.689 | 0.283 | ||
Udmurt | 96 | 5.73% | 0.730 | 0.730 | 0.418 | 0.128 | 0.767 | 0.343 | 0.520 | 0.520 | 0.124 | |
Komi (total) | 94 | 3.19% | 0.893 | 0.893 | 0.984 | 0.693 | 0.568 | 0.343 | 0.749 | |||
Izhensk | 47 | 3.19% | 0.992 | 0.992 | 0.917 | 0.835 | 0.689 | 0.520 | 0.678 | 0.892 | ||
Syktyvdinsk | 47 | 3.19% | 0.992 | 0.992 | 0.917 | 0.835 | 0.689 | 0.520 | 0.678 | 0.892 | ||
Bessermyan | 94 | 2.13% | 0.491 | 0.491 | 0.500 | 0.803 | 0.283 | 0.124 | 0.749 | 0.892 | 0.892 | |
Finnish [20] | 99 | 5.1% | 0.930 | 0.930 | 0.619 | 0.204 | 0.923 | 0.942 | 0.509 | 0.677 | 0.677 | 0.207 |
Russian [24] | 314 | 4.8% | 0.957 | 0.957 | 0.576 | 0.172 | 0.958 | 0.733 | 0.468 | 0.673 | 0.673 | 0.165 |
Tatar, Russia [24] | 243 | 6.4% | 0.482 | 0.482 | 0.158 | 0.050 | 0.961 | 0.889 | 0.150 | 0.335 | 0.335 | 0.041 |
Bashkir, Russia [24] | 134 | 10.5% | 0.063 | 0.063 | 0.004 | 0.002 | 0.329 | 0.105 | 0.006 | 0.051 | 0.051 | 0.001 |
England and Scotland [20] | 91 | 3.3% | 0.935 | 0.935 | 0.964 | 0.658 | 0.603 | 0.379 | 0.813 | 0.756 | 0.756 | 0.709 |
Spain [20] | 107 | 1.9% | 0.372 | 0.372 | 0.363 | 0.727 | 0.203 | 0.073 | 0.597 | 0.763 | 0.763 | 0.863 |
Toscana, Italy [20] | 107 | 3.3% | 0.908 | 0.908 | 0.994 | 0.642 | 0.573 | 0.337 | 0.812 | 0.754 | 0.754 | 0.693 |
Balkar [25] | 104 | 8.6% | 0.191 | 0.191 | 0.035 | 0.012 | 0.595 | 0.350 | 0.039 | 0.138 | 0.138 | 0.009 |
Karachay [25] | 73 | 7.5% | 0.373 | 0.373 | 0.137 | 0.040 | 0.837 | 0.657 | 0.125 | 0.263 | 0.263 | 0.035 |
Europe [20] | 503 | 3.5% | 0.901 | 0.901 | 0.977 | 0.438 | 0.524 | 0.199 | 0..984 | 0.881 | 0.881 | 0.463 |
S. Asia [20] | 489 | 12.7% | 0.006 | 0.006 | 0.00002 | 0.00008 | 0.126 | 0.008 | 0.0001 | 0.011 | 0.011 | 0.00002 |
Population | N | CC | CT | TT | Minor Allele Frequency (95% CI) | χ2 | Deviations from HWE, p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | |||||
Veps | 60 | 47 | 47.7 | 78.33 | 13 | 11.6 | 21.67 | 0 | 0.7 | 0 | 10.83% (5.90–17.81) | 0.886 | 0.347 |
Karelian | 60 | 45 | 45.9 | 75 | 15 | 13.1 | 25 | 0 | 0.9 | 0 | 12.50% (7.17–19.78) | 1.224 | 0.268 |
Udmurt | 96 | 61 | 64.2 | 63.54 | 35 | 28.6 | 36.46 | 0 | 3.2 | 0 | 18.23% (13.04–24.43) | 4.771 | 0.029 |
Bessermyan | 94 | 64 | 66.4 | 68.09 | 30 | 25.2 | 31.91 | 0 | 2.4 | 0 | 15.96% (11.03–21.99) | 3.389 | 0.066 |
Mordovian (total) | 136 | 87 | 91.4 | 63.97 | 49 | 40.2 | 36.03 | 0 | 4.4 | 0 | 18.01% (13.63–23.11) | 6.566 | 0.01 |
Erzya | 78 | 52 | 54.2 | 66.67 | 26 | 21.7 | 33.33 | 0 | 2.2 | 0 | 16.67% (11.19–23.46) | 3.12 | 0.077 |
Moksha | 35 | 19 | 20.8 | 54.29 | 16 | 12.3 | 45.71 | 0 | 1.8 | 0 | 22.86% (13.67–34.45) | 3.073 | 0.08 |
Komi (total) | 94 | 75 | 76 | 79.79 | 19 | 17.1 | 20.21 | 0 | 1 | 0 | 10.11% (6.20–15.33) | 1.188 | 0.276 |
Izhemsk | 47 | 41 | 41.2 | 87.23 | 6 | 5.6 | 12.77 | 0 | 0.2 | 0 | 6.38% (2.38–13.38) | 0.218 | 0.640 |
Syktyvdinsk | 47 | 34 | 34.9 | 72.34 | 13 | 11.2 | 27.66 | 0 | 0.9 | 0 | 13.83% (7.57–22.49) | 1.211 | 0.271 |
Population | N | Minor allele Frequency% | Veps | Karelian | Mordovian (Total) | Erzya | Moksha | Udmurt | Komi (Total) | Izhemsk | Syktyvdinsk | Bessermyan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Veps | 60 | 10.83% | 0.841 | 0.100 | 0.228 | 0.044 | 0.109 | 0.990 | 0.371 | 0.691 | 0.273 | |
Karelian | 60 | 12.50% | 0.841 | 0.225 | 0.427 | 0.097 | 0.237 | 0.640 | 0.207 | 0.982 | 0.501 | |
Mordovian (total) | 136 | 18.01% | 0.100 | 0.225 | 0.950 | 0.027 | 0.011 | 0.396 | 0.653 | |||
Erzya | 78 | 16.67% | 0.228 | 0.427 | 0.357 | 0.811 | 0.102 | 0.031 | 0.626 | 0.975 | ||
Moksha | 35 | 22.86% | 0.044 | 0.097 | 0.357 | 0.509 | 0.014 | 0.005 | 0.176 | 0.269 | ||
Udmurt | 96 | 18.23% | 0.109 | 0.237 | 0.950 | 0.811 | 0.509 | 0.034 | 0.012 | 0.402 | 0.651 | |
Komi (total) | 94 | 10.11% | 0.990 | 0.640 | 0.027 | 0.102 | 0.014 | 0.034 | 0.125 | |||
Izhemsk | 47 | 6.38% | 0.371 | 0.207 | 0.011 | 0.031 | 0.005 | 0.012 | 0.161 | |||
Syktyvdinsk | 47 | 13.83% | 0.691 | 0.982 | 0.396 | 0.626 | 0.176 | 0.402 | 0.161 | 0.717 | ||
Bessermyan | 94 | 15.96% | 0.273 | 0.501 | 0.653 | 0.975 | 0.269 | 0.651 | 0.125 | 0.037 | 0.717 | |
Finnish [20] | 99 | 14.6% | 0.422 | 0.712 | 0.399 | 0.709 | 0.163 | 0.413 | 0.231 | 0.066 | 0.940 | 0.829 |
England and Scotland [20] | 91 | 24.7% | 0.004 | 0.014 | 0.107 | 0.093 | 0.884 | 0.160 | 0.0003 | 0.0004 | 0.043 | 0.049 |
Spain [20] | 107 | 17.3% | 0.154 | 0.317 | 0.930 | 0.986 | 0.389 | 0.907 | 0.053 | 0.018 | 0.508 | 0.823 |
Toscana, Italy [20] | 107 | 20.6% | 0.034 | 0.088 | 0.554 | 0.418 | 0.810 | 0.640 | 0.006 | 0.003 | 0.188 | 0.289 |
Europe [20] | 503 | 20.2% | 0.014 | 0.044 | 0.426 | 0.305 | 0.700 | 0.535 | 0.001 | 0.002 | 0.152 | 0.180 |
S. Asia [20] | 489 | 16.5% | 0.111 | 0.264 | 0.545 | 0.949 | 0.225 | 0.549 | 0.027 | 0.015 | 0.551 | 0.864 |
Population | N | GG | GA | AA | Minor Allele Frequency (95% CI) | χ2 | Deviations from HWE, p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | |||||
Veps | 60 | 48 | 48.6 | 80 | 12 | 10.8 | 20 | 0 | 0.6 | 0 | 10% (5.27–16.82) | 0.741 | 0.389 |
Karelian | 60 | 43 | 44.2 | 71.67 | 17 | 14.6 | 28.33 | 0 | 1.2 | 0 | 14.17% (8.47–21.71) | 1.634 | 0.201 |
Udmurt | 96 | 65 | 67.5 | 67.71 | 31 | 26 | 32.29 | 0 | 2.5 | 0 | 16.15% (11.24–22.13) | 3.559 | 0.059 |
Bessermyan | 94 | 68 | 69.8 | 72.34 | 26 | 22.4 | 27.66 | 0 | 1.8 | 0 | 13.83% (9.24–19.60) | 2.421 | 0.119 |
Mordovian (total) | 136 | 94 | 97.2 | 69.12 | 42 | 35.5 | 30.88 | 0 | 3.2 | 0 | 15.44% (11.36–20.29) | 4.535 | 0.033 |
Erzya | 78 | 55 | 56.7 | 70.51 | 23 | 19.6 | 29.49 | 0 | 1.7 | 0 | 14.74% (9.58–21.30) | 2.333 | 0.127 |
Moksha | 35 | 22 | 23.2 | 62.86 | 13 | 10.6 | 37.14 | 0 | 1.2 | 0 | 18.57% (10.28–29.66) | 1.821 | 0.177 |
Komi (total) | 94 | 74 | 75.1 | 78.72 | 20 | 17.9 | 21.28 | 0 | 1.1 | 0 | 10.64% (6.62–15.95) | 1.332 | 0.248 |
Izhemsk | 47 | 41 | 41.2 | 87.23 | 6 | 5.6 | 12.77 | 0 | 0.2 | 0 | 6.38% (2.38–13.38) | 0.218 | 0.640 |
Syktyvdinsk | 47 | 33 | 34 | 70.21 | 14 | 11.9 | 29.79 | 0 | 1 | 0 | 14.89% (8.39–23.72) | 1.439 | 0.230 |
Population | N | Minor allele Frequency% | Veps | Karelian | Mordovian (Total) | Erzya | Moksha | Udmurt | Komi (Total) | Izhemsk | Syktyvdinsk | Bessermyan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Veps | 60 | 10% | 0.428 | 0.200 | 0.321 | 0.143 | 0.173 | 0.990 | 0.485 | 0.380 | 0.413 | |
Karelian | 60 | 14.17% | 0.428 | 0.863 | 0.970 | 0.550 | 0.756 | 0.454 | 0.109 | 0.963 | 0.932 | |
Mordovian (total) | 136 | 15.44% | 0.200 | 0.863 | 0.939 | 0.179 | 0.038 | 0.969 | 0.730 | |||
Erzya | 78 | 14.74% | 0.321 | 0.970 | 0.596 | 0.833 | 0.326 | 0.072 | 0.880 | 0.931 | ||
Moksha | 35 | 18.57% | 0.143 | 0.550 | 0.596 | 0.781 | 0.137 | 0.030 | 0.678 | 0.453 | ||
Udmurt | 96 | 16.15% | 0.173 | 0.756 | 0.939 | 0.833 | 0.781 | 0.154 | 0.033 | 0.920 | 0.625 | |
Komi (total) | 94 | 10.64% | 0.990 | 0.454 | 0.179 | 0.326 | 0.137 | 0.154 | 0.431 | |||
Izhemsk | 47 | 6.38% | 0.485 | 0.109 | 0.038 | 0.072 | 0.030 | 0.033 | 0.098 | 0.097 | ||
Syktyvdinsk | 47 | 14.89% | 0.380 | 0.963 | 0.969 | 0.880 | 0.678 | 0.920 | 0.098 | 0.952 | ||
Bessermyan | 94 | 13.83% | 0.413 | 0.932 | 0.730 | 0.931 | 0.453 | 0.625 | 0.431 | 0.097 | 0.952 | |
Finnish [20] | 99 | 13.6% | 0.434 | 0.972 | 0.679 | 0.886 | 0.423 | 0.580 | 0.456 | 0.103 | 0.913 | 0.926 |
England and Scotland [20] | 91 | 24.2% | 0.003 | 0.048 | 0.027 | 0.042 | 0.433 | 0.070 | 0.0009 | 0.0005 | 0.101 | 0.016 |
Spain [20] | 107 | 14.5% | 0.315 | 0.934 | 0.869 | 0.936 | 0.529 | 0.744 | 0.314 | 0.068 | 0.935 | 0.964 |
Toscana, Italy [20] | 107 | 18.7% | 0.051 | 0.366 | 0.408 | 0.391 | 0.877 | 0.587 | 0.033 | 0.009 | 0.519 | 0.239 |
Europe [20] | 503 | 18.6% | 0.019 | 0.234 | 0.230 | 0.245 | 0.877 | 0.421 | 0.008 | 0.005 | 0.455 | 0.118 |
S. Asia [20] | 489 | 10.9% | 0.754 | 0.292 | 0.043 | 0.166 | 0.081 | 0.040 | 0.903 | 0.231 | 0.324 | 0.310 |
Population | N | A/A | A/del | del/del | Minor Allele Frequency (95% CI) | χ2 | Deviations from HWE, p | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | Observed (N) | Expected (N) | % | |||||
Veps | 60 | 52 | 52.3 | 86.67 | 8 | 7.5 | 13.33 | 0 | 0.3 | 0 | 6.67% (2.92–12.71) | 0.306 | 0.580 |
Karelian | 60 | 58 | 58 | 96.67 | 2 | 2 | 3.33 | 0 | 0 | 0 | 1.67% (0.20–5.89) | 0.017 | 0.895 |
Udmurt | 96 | 96 | 96 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Bessermyan | 94 | 94 | 94 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Mordovian (total) | 136 | 132 | 132 | 97.06 | 4 | 3.9 | 2.94 | 0 | 0 | 0 | 1.47% (0.40–3.72) | 0.03 | 0.861 |
Erzya | 78 | 76 | 76 | 97.44 | 2 | 2 | 2.56 | 0 | 0 | 0 | 1.28% (0.16–4.55) | 0.013 | 0.908 |
Moksha | 35 | 33 | 33 | 94.29 | 2 | 1.9 | 5.71 | 0 | 0 | 0 | 1.99% (0.35–9.94) | 0.03 | 0.862 |
Komi (total) | 94 | 94 | 94 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Izhemsk | 47 | 47 | 47 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |||
Syktyvdinsk | 47 | 47 | 47 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
Population | N | Minor allele Frequency% | Veps | Karelian | Mordovian (Total) | Erzya | Moksha | Udmurt | Komi (Total) | Izhemsk | Syktyvdinsk | Bessermyan |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Veps | 60 | 6.67% | 0.106 | 0.015 | 0.040 | 0.425 | 0.0008 | 0.0009 | 0.030 | 0.030 | 0.0009 | |
Karelian | 60 | 1.67% | 0.106 | 0.763 | 0.808 | 0.978 | 0.214 | 0.223 | 0.640 | 0.640 | 0.223 | |
Mordovian (total) | 136 | 1.47% | 0.015 | 0.763 | 0.272 | 0.282 | 0.734 | 0.734 | 0.282 | |||
Erzya | 78 | 1.28% | 0.040 | 0.808 | 0.776 | 0.346 | 0.358 | 0.842 | 0.842 | 0.358 | ||
Moksha | 35 | 1.99% | 0.425 | 0.978 | 0.776 | 0.053 | 0.057 | 0.293 | 0.293 | 0.057 | ||
Udmurt | 96 | 0% | 0.0008 | 0.214 | 0.272 | 0.346 | 0.053 | |||||
Komi (total) | 94 | 0% | 0.0009 | 0.223 | 0.282 | 0.358 | 0.057 | |||||
Izhemsk | 47 | 0% | 0.030 | 0.640 | 0.734 | 0.842 | 0.293 | |||||
Syktyvdinsk | 47 | 0% | 0.030 | 0.640 | 0.734 | 0.842 | 0.293 | |||||
Bessermyan | 94 | 0% | 0.0009 | 0.223 | 0.282 | 0.358 | 0.057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dzhaubermezov, M.; Ekomasova, N.; Mustafin, R.; Gabidullina, L.; Galimova, Y.; Nurgalieva, A.; Valova, Y.; Prokofyeva, D.; Khusnutdinova, E. Genetic Polymorphisms of Cytochromes P450 in Finno-Permic Populations of Russia. Genes 2022, 13, 2353. https://doi.org/10.3390/genes13122353
Dzhaubermezov M, Ekomasova N, Mustafin R, Gabidullina L, Galimova Y, Nurgalieva A, Valova Y, Prokofyeva D, Khusnutdinova E. Genetic Polymorphisms of Cytochromes P450 in Finno-Permic Populations of Russia. Genes. 2022; 13(12):2353. https://doi.org/10.3390/genes13122353
Chicago/Turabian StyleDzhaubermezov, Murat, Natalya Ekomasova, Rustam Mustafin, Lilia Gabidullina, Yuliya Galimova, Alfiya Nurgalieva, Yana Valova, Darya Prokofyeva, and Elza Khusnutdinova. 2022. "Genetic Polymorphisms of Cytochromes P450 in Finno-Permic Populations of Russia" Genes 13, no. 12: 2353. https://doi.org/10.3390/genes13122353
APA StyleDzhaubermezov, M., Ekomasova, N., Mustafin, R., Gabidullina, L., Galimova, Y., Nurgalieva, A., Valova, Y., Prokofyeva, D., & Khusnutdinova, E. (2022). Genetic Polymorphisms of Cytochromes P450 in Finno-Permic Populations of Russia. Genes, 13(12), 2353. https://doi.org/10.3390/genes13122353