Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Sample Collection, and Phenotypic Measurements
2.2. DNA Extraction, Genotyping, and Quality Control (QC)
2.3. Statistical Analysis
2.4. Functional Annotation of Significant SNPs
3. Results
3.1. Descriptive Statistics
3.2. SNP Marker Summary
3.3. Genomic Heritability Estimates
3.4. Genome-Wide Association Studies
3.5. Candidate Genes and QTLs
4. Discussion
4.1. Genomic Heritability Estimates
4.2. Genome Wide Association Studies (GWAS)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coles, G.C.; Rhodes, A.C.; Wolstenholme, A.J. Rapid Selection for Ivermectin Resistance in Haemonchus Contortus. Vet. Parasitol. 2005, 129, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Lane, J.; Jubb, T.; Shepherd, R.; Webb-Ware, J.; Fordyce, G. Priority List of Endemic Diseases for the Red Meat Industries; Meat & Livestock Australia Limited: North Sydney, Australia, 2015. [Google Scholar]
- Vickers, M.; Wright, N. Economic Impact of Health and Welfare Issues in Beef Cattle and Sheep in England; Nerys Wright: Stevenage, UK, 2013. [Google Scholar]
- Windon, R.G.; Dineen, J.K.; Wagland, B.M. Genetic Control of Immunological Responsiveness against the Intestinal Nematode Trichostrongylus Colubriformis in Lambs. In Merino Improvement Programs in Australia, Proceedings of a National Symposium; Australian Wool Corporation: Leura, NSW, Australia, 1987. [Google Scholar]
- Egger-Danner, C.; Hansen, O.K.; Stock, K.; Pryce, J.E.; Cole, J.; Gengler, N.; Heringstad, B. Icar Technical Series No. 17; ICAR: Via G. Tomassetti, Italy, 2013. [Google Scholar]
- Boylu, D.; Onder, H. Biological Control of Gastrointestinal Helminthes of Livestock. Black Sea J. Eng. Sci. 2020, 3, 31–37. [Google Scholar] [CrossRef]
- Fogarty, N.M. Genetic Parameters for Live Weight, Fat and Muscle Measurements, Wool Production and Reproduction in Sheep: A Review. Anim. Breed. Abstr. 1995, 63, 101–143. [Google Scholar]
- Safari, E.; Fogarty, N.M.; Gilmour, A.R.; Atkins, K.D.; Mortimer, S.I.; Swan, A.A.; Brien, F.D.; Greeff, J.C.; van der Werf, J.H.J. Across Population Genetic Parameters for Wool, Growth, and Reproduction Traits in Australian Merino Sheep. 2. Estimates of Heritability and Variance Components. Aust. J. Agric. Res. 2007, 58, 177–184. [Google Scholar] [CrossRef]
- Kizilaslan, M.; Arzik, Y.; White, S.N.; Piel, L.M.W.; Cinar, M.U. Genetic Parameters and Genomic Regions Underlying Growth and Linear Type Traits in Akkaraman Sheep. Genes 2022, 13, 1414. [Google Scholar] [CrossRef] [PubMed]
- Berton, M.P.; Silva, R.P.; Carvalho, F.E.; Chiaia, H.L.J.; Oliveira, P.S.; Eler, J.P.; Banchero, G.; Ferraz, J.B.S.; Baldi, F. Genetic Parameter Estimates for Gastrointestinal Nematode Parasite Resistance and Maternal Efficiency Indicator Traits in Santa Inês Breed. J. Anim. Breed. Genet. 2019, 136, 495–504. [Google Scholar] [CrossRef]
- Bishop, S.C.; Bairden, K.; McKellar, Q.A.; Park, M.; Stear, M.J. Genetic Parameters for Faecal Egg Count Following Mixed, Natural, Predominantly Ostertagia Circumcincta Infection and Relationships with Live Weight in Young Lambs. Anim. Sci. 1996, 63, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Gowane, G.R.; Swarnkar, C.P.; Misra, S.S.; Kumar, R.; Kumar, A.; Prince, L.L.L. Genetic Parameter Estimates for Fecal Egg Counts and Their Relationship with Growth in Avikalin and Malpura Sheep. Animal 2019, 13, 1788–1796. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gil, B.; Pérez, J.; De La Fuente, L.F.; Meana, A.; Martínez-Valladares, M.; San Primitivo, F.; Rojo-Vázquez, F.A.; Arranz, J.J. Genetic Parameters for Resistance to Trichostrongylid Infection in Dairy Sheep. Animal 2010, 4, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisman, A.E.; Brown, D.J. Genetic Parameters for Bodyweight, Wool, and Disease Resistance and Reproduction Traits in Merino Sheep. 3. Genetic Relationships between Ultrasound Scan Traits and Other Traits. Anim. Prod. Sci. 2009, 49, 283–288. [Google Scholar] [CrossRef]
- Mpetile, Z.; Cloete, S.W.P.; Kruger, A.C.M.; Dzama, K. Environmental and Genetic Factors Affecting Faecal Worm Egg Counts in Merinos Divergently Selected for Reproduction. S. Afr. J. Anim. Sci. 2015, 45, 510–520. [Google Scholar] [CrossRef]
- Pacheco, A.; McNeilly, T.N.; Banos, G.; Conington, J. Genetic Parameters of Animal Traits Associated with Coccidian and Nematode Parasite Load and Growth in Scottish Blackface Sheep. Animal 2021, 15, 100185. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.; Louvandini, H.; Paiva, S.R.; de Oliveira, A.A.; Azevedo, H.C.; de Melo, C.B. Genetic Factors of Sheep Affecting Gastrointestinal Parasite Infections in the Distrito Federal, Brazil. Vet. Parasitol. 2009, 166, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Al Kalaldeh, M.; Gibson, J.; Lee, S.H.; Gondro, C.; Van Der Werf, J.H.J. Detection of Genomic Regions Underlying Resistance to Gastrointestinal Parasites in Australian Sheep. Genet. Sel. Evol. 2019, 51, 37. [Google Scholar] [CrossRef] [Green Version]
- Berton, M.P.; Oliveira Silva, R.M.; Peripolli, E.; Stafuzza, N.B.; Martin, J.F.; Álvarez, M.S.; Gavinã, B.V.; Toro, M.A.; Banchero, G.; Oliveira, P.S.; et al. Genomic Regions and Pathways Associated with Gastrointestinal Parasites Resistance in Santa Inês Breed Adapted to Tropical Climate. J. Anim. Sci. Biotechnol. 2017, 8, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucha, S.; Mrode, R.; Coffey, M.; Kizilaslan, M.; Desire, S.; Conington, J. Genome-Wide Association Study of Conformation and Milk Yield in Mixed-Breed Dairy Goats. J. Dairy Sci. 2018, 101, 2213–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yilmaz, O.; Kizilaslan, M.; Arzik, Y.; Behrem, S.; Ata, N.; Karaca, O.; Elmaci, C.; Cemal, I. Genome-Wide Association Studies of Preweaning Growth and in Vivo Carcass Composition Traits in Esme Sheep. J. Anim. Breed. Genet. 2022, 139, 26–39. [Google Scholar] [CrossRef]
- Kizilaslan, M.; Arzik, Y.; Cinar, M.U.; Konca, Y. Genome-Wise Engineering of Ruminant Nutrition-Nutrigenomics: Applications, Challenges, and Future Perspectives–A Review. Ann. Anim. Sci. 2021, 22, 511–521. [Google Scholar] [CrossRef]
- Arzik, Y.; Kizilaslan, M.; White, S.N.; Piel, L.M.W.; Cinar, M.U. Estimates of Genomic Heritability and Genome-Wide Association Studies for Blood Parameters in Akkaraman Sheep. Sci. Rep. 2022, 12, 18477. [Google Scholar] [CrossRef]
- Davenport, K.M.; Bickhart, D.M.; Worley, K.; Murali, S.C.; Salavati, M.; Clark, E.L.; Cockett, N.E.; Heaton, M.P.; Smith, T.P.L.; Murdoch, B.M. An Improved Ovine Reference Genome Assembly to Facilitate In-Depth Functional Annotation of the Sheep Genome. Gigascience 2022, 11, giab096. [Google Scholar] [CrossRef]
- White, S.N.; Mousel, M.R.; Herrmann-Hoesing, L.M.; Reynolds, J.O.; Leymaster, K.A.; Neibergs, H.L.; Lewis, G.S.; Knowles, D.P. Genome-Wide Association Identifies Multiple Genomic Regions Associated with Susceptibility to and Control of Ovine Lentivirus. PLoS ONE 2012, 7, e47829. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.A.; Wheeler, M.; Watson, T.G.; Hosking, B.C.; Leathwick, D.M. Direct and Correlated Responses to Selection for High or Low Faecal Nematode Egg Count in Perendale Sheep. N. Z. J. Agric. Res. 2005, 48, 1–10. [Google Scholar] [CrossRef]
- Nagamine, Y.; Pong-Wong, R.; Navarro, P.; Shirali, M.; Uemoto, Y.; Huffman, J.; Vitart, V.; Hayward, C.; Riggio, V.; Matika, O.; et al. Regional Heritability Mapping for the Dissection of Complex Traits. In Proceedings of the 4th International Conference on Quantitative Genetics, Edinburgh, UK, 17–22 June 2012; pp. 2–3. [Google Scholar]
- Ahbara, A.M.; Rouatbi, M.; Gharbi, M.; Rekik, M.; Haile, A.; Rischkowsky, B.; Mwacharo, J.M. Genome-Wide Insights on Gastrointestinal Nematode Resistance in Autochthonous Tunisian Sheep. Sci. Rep. 2021, 11, 9250. [Google Scholar] [CrossRef]
- Atlija, M.; Arranz, J.-J.; Martinez-Valladares, M.; Gutiérrez-Gil, B. Detection and Replication of QTL Underlying Resistance to Gastrointestinal Nematodes in Adult Sheep Using the Ovine 50K SNP Array. Genet. Sel. Evol. 2016, 48, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benavides, M.V.; Sonstegard, T.S.; Kemp, S.; Mugambi, J.M.; Gibson, J.P.; Baker, R.L.; Hanotte, O.; Marshall, K.; Van Tassell, C. Identification of Novel Loci Associated with Gastrointestinal Parasite Resistance in a Red Maasai x Dorper Backcross Population. PLoS ONE 2015, 10, e122797. [Google Scholar] [CrossRef] [Green Version]
- Periasamy, K.; Pichler, R.; Poli, M.; Cristel, S.; Cetrá, B.; Medus, D.; Basar, M.; Thiruvenkadan, A.K.; Ramasamy, S.; Ellahi, M.B.; et al. Candidate Gene Approach for Parasite Resistance in Sheep-Variation in Immune Pathway Genes and Association with Fecal Egg Count. PLoS ONE 2014, 9, e88337. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Fernández, I.; Soudré, A.; Traoré, A.; Pérez-Pardal, L.; Sanou, M.; Tapsoba, S.A.R.; Menéndez-Arias, N.A.; Goyache, F. Identification of Genomic Regions and Candidate Genes of Functional Importance for Gastrointestinal Parasite Resistance Traits in Djallonké Sheep of Burkina Faso. Arch. Anim. Breed. 2019, 62, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Yaman, Y.; Aymaz, R.; Keleş, M.; Bay, V.; Özüiçli, M.; Şenlik, B. Association between Ovine Toll-like Receptor 4 (TLR4) Gene Coding Variants and Presence of Eimeria Spp. in Naturally Infected Adult Turkish Native Sheep. Anim. Biotechnol. 2021, 32, 375–380. [Google Scholar] [CrossRef] [PubMed]
- MAFF. Manual of Veterinary Parasitological Techniques; MAFF: London, UK, 1986.
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; van Duijn, C.M. GenABEL: An R Library for Genome-Wide Association Analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/. (accessed on 12 October 2020).
- McCarthy, M.I.; Abecasis, G.R.; Cardon, L.R.; Goldstein, D.B.; Little, J.; Ioannidis, J.P.A.; Hirschhorn, J.N. Genome-Wide Association Studies for Complex Traits: Consensus, Uncertainty and Challenges. Nat. Rev. Genet. 2008, 9, 356–369. [Google Scholar] [CrossRef]
- Consortium, W.T.C.C. Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3000 Shared Controls. Nature 2007, 447, 661. [Google Scholar]
- Weale, M.E. Quality Control for Genome-Wide Association Studies. In Genetic Variation; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Covarrubias-Pazaran, G. Genome-Assisted Prediction of Quantitative Traits Using the R Package Sommer. PLoS ONE 2016, 11, e0156744. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, S.H.; Kuznetsov, A.; Ananiev, V.; Asztalos, A.; Borodin, E.; Evgeniev, V.; Joukov, V.; Lotov, V.; Pannu, R.; Rudnev, D. Accessing NCBI Data Using the NCBI Sequence Viewer and Genome Data Viewer (GDV). Genome Res. 2021, 31, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the Future: Meeting New Challenges and Providing Updated Services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef] [PubMed]
- Binns, D.; Dimmer, E.; Huntley, R.; Barrell, D.; O’donovan, C.; Apweiler, R. QuickGO: A Web-Based Tool for Gene Ontology Searching. Bioinformatics 2009, 25, 3045–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, B.; Roeder, K. Genomic Control for Association Studies. Biometrics 1999, 55, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Bayram, D.; Akyüz, B.; Arslan, K.; Ozdemir, F.; Aksel, E.; Cinar, M.U. DGAT1, CAST and IGF-I Gene Polymorphisms in Akkaraman Lambs and Their Effects on Live Weights up to Weaning Age. Kafkas Univ. Vet. Fak. Derg. 2019, 25, 9–15. [Google Scholar]
- Unlusoy, I.; Ertugrul, O. The Effects of Exon 2 of Inhibin ΒB Gene and Exon 3 of FSHB Gene on Litter Size in Akkaraman and Bafra Sheep Breeds. Kafkas Üniv. Vet. Fakültesi Derg. 2016, 22, 771–776. [Google Scholar]
- Behrem, S.; Tuncer, S.S.; Şenyüz, H.H. Comparison of Reproductive Performance, Live Weight, Survivability, and Fleece Characteristics of Indoor-Raised Central Anatolian Merino and Malya Sheep. Rev. Bras. Zootec. 2022, 51, e20210036. [Google Scholar] [CrossRef]
- Behrem, S.; Gül, S. Effects of Age and Body Region on Wool Characteristics of Merino Sheep Crossbreds in Turkey. Turk. J. Vet. Anim. Sci. 2022, 46, 235–247. [Google Scholar] [CrossRef]
- Behrem, S.; Keskin, M.; Gül, S.; Ünay, E.; Erişek, A. Effects of Age, Body Region and Mineral Contents on the Fleece Characteristics of Central Anatolian Merino Sheep. Tekst. Ve Konfeksiyon 2022, 32, 108–114. [Google Scholar] [CrossRef]
- Huisman, A.E.; Brown, D.J.; Ball, A.J.; Graser, H.-U. Genetic Parameters for Bodyweight, Wool, and Disease Resistance and Reproduction Traits in Merino Sheep. 1. Description of Traits, Model Comparison, Variance Components and Their Ratios. Aust. J. Exp. Agric. 2008, 48, 1177–1185. [Google Scholar] [CrossRef]
- Bastías-Candia, S.; Martínez, M.; Zolezzi, J.M.; Inestrosa, N.C. Wnt Signaling Upregulates Teneurin-3 Expression via Canonical and Non-Canonical Wnt Pathway Crosstalk. Front. Neurosci. 2019, 13, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.C.; Kaufmann, M.; Kitazume-Kawaguchi, S.; Kono, M.; Takashima, S.; Kurosawa, N.; Liu, H.; Pircher, H.; Tsuji, S. Molecular Cloning and Functional Expression of Two Members of Mouse NeuAcK2, 3-GalL1, 3GalNAc K2, 6-Sialyltransferase Family, ST6GalNAc III and IV. J. Biol. Chem. 1999, 274, 11958–11967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McRae, K.M.; Stear, M.J.; Good, B.; Keane, O.M. The Host Immune Response to Gastrointestinal Nematode Infection in Sheep. Parasite Immunol. 2015, 37, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-Transmembrane Receptors. Nat. Rev. Mol. Cell Biol. 2002, 3, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Hohenhaus, D.M.; Schaale, K.; Le Cao, K.-A.; Seow, V.; Iyer, A.; Fairlie, D.P.; Sweet, M.J. An MRNA Atlas of G Protein-Coupled Receptor Expression during Primary Human Monocyte/Macrophage Differentiation and Lipopolysaccharide-Mediated Activation Identifies Targetable Candidate Regulators of Inflammation. Immunobiology 2013, 218, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Lattin, J.E.; Schroder, K.; Su, A.I.; Walker, J.R.; Zhang, J.; Wiltshire, T.; Saijo, K.; Glass, C.K.; Hume, D.A.; Kellie, S. Expression Analysis of G Protein-Coupled Receptors in Mouse Macrophages. Immunome Res. 2008, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Yin, Y.-L.; Li, D.; Kim, S.W.; Wu, G. Amino Acids and Immune Function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calefi, A.S.; da Silva Fonseca, J.G.; de Queiroz Nunes, C.A.; Lima, A.P.N.; Quinteiro-Filho, W.M.; Flório, J.C.; Zager, A.; Ferreira, A.J.P.; Palermo-Neto, J. Heat Stress Modulates Brain Monoamines and Their Metabolites Production in Broiler Chickens Co-Infected with Clostridium Perfringens Type A and Eimeria Spp. Vet. Sci. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novilla, M.N.; Carpenter, J.W. Pathology and Pathogenesis of Disseminated Visceral Coccidiosis in Cranes. Avian Pathol. 2004, 33, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Kapczuk, P.; Kosik-Bogacka, D.; Kupnicka, P.; Metryka, E.; Simińska, D.; Rogulska, K.; Skórka-Majewicz, M.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. The Influence of Selected Gastrointestinal Parasites on Apoptosis in Intestinal Epithelial Cells. Biomolecules 2020, 10, 674. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Li, J.; Gong, A.-Y.; Deng, S.; Li, M.; Wang, Y.; Mathy, N.W.; Feng, Y.; Xiao, L.; Chen, X.-M. Cryptosporidial Infection Suppresses Intestinal Epithelial Cell Mapk Signaling Impairing Host Anti-Parasitic Defense. Microorganisms 2021, 9, 151. [Google Scholar] [CrossRef]
- Ellinghaus, D.; Jostins, L.; Spain, S.L.; Cortes, A.; Bethune, J.; Han, B.; Park, Y.R.; Raychaudhuri, S.; Pouget, J.G.; Hübenthal, M. Analysis of Five Chronic Inflammatory Diseases Identifies 27 New Associations and Highlights Disease-Specific Patterns at Shared Loci. Nat. Genet. 2016, 48, 510–518. [Google Scholar] [CrossRef] [PubMed]
Trait | N | Mean | Median | Minimum | Maximum | % 0 Values | SD | h2 | SE 1 |
---|---|---|---|---|---|---|---|---|---|
NemFEC3 | 129 | 36.51 | 0 | 0 | 485 | 68.59 | 68 | 0.34 | 0.28 |
MonFEC3 | 129 | 2247 | 295 | 0 | 14,383 | 38.01 | 2867 | 0.00 | 0.20 |
CocFOC3 | 129 | 1790 | 978 | 0 | 38,203 | 4.95 | 3620 | 0.11 | 0.24 |
NemFEC6 | 475 | 6.68 | 0 | 0 | 271 | 93.90 | 28 | 0.01 | 0.05 |
MonFEC6 | 475 | 2810 | 0 | 0 | 95,841 | 68.63 | 8250 | 0.30 | 0.11 |
CocFOC6 | 475 | 2802 | 1670 | 0 | 23,139 | 5.68 | 3104 | 0.25 | 0.12 |
Traits | SNP Name | Chr. | Position (bp) 1 | p-Value | Associated Genes | |
---|---|---|---|---|---|---|
Name | Distance (kbp) | |||||
NemFEC3 | rs415401096 | 1 | 275,345,749 | 1.44 × 10−5 | ZNF596 | ~5 Kb |
NemFEC3 | rs408499938 | 21 | 23,300,938 | 1.90 × 10−5 | NELL1 | within |
NemFEC6 | rs421027634 | 26 | 12,363,158 | 1.08 × 10−7 | TENM3 | within |
NemFEC6 | rs413573397 | 1 | 51,891,269 | 5.48 × 10−6 | ST6GALNAC3 | within |
NemFEC6 | rs403250421 | 7 | 30,603,665 | 1.09 × 10−5 | TMCO5A | ~35 Kb |
MonFEC3 | rs409854037 | 2 | 209,775,617 | 1.01 × 10−5 | PTH2R | ~200 Kb |
MonFEC6 | rs401554073 | 22 | 34,528,500 | 6.92 × 10−7 | ATRNL1 | within |
CocFOC3 | rs428814111 | 3 | 177,167,791 | 5.63 × 10−6 | LARGE1 | ~200 Kb |
CocFOC3 | rs406580275 | 1 | 90,278,893 | 1.79 × 10−5 | HIPK1 | within |
CocFOC3 | rs405203400 | 3 | 114,958,514 | 2.02 × 10−5 | SYT1 | within |
CocFOC6 | rs405331699 | 2 | 224,516,770 | 3.05 × 10−6 | SCG2 | ~200 Kb |
CocFOC6 | rs412952616 | 3 | 36,311,950 | 9.18 × 10−6 | ALK | within |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arzik, Y.; Kizilaslan, M.; White, S.N.; Piel, L.M.W.; Çınar, M.U. Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep. Genes 2022, 13, 2177. https://doi.org/10.3390/genes13122177
Arzik Y, Kizilaslan M, White SN, Piel LMW, Çınar MU. Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep. Genes. 2022; 13(12):2177. https://doi.org/10.3390/genes13122177
Chicago/Turabian StyleArzik, Yunus, Mehmet Kizilaslan, Stephen N. White, Lindsay M. W. Piel, and Mehmet Ulaş Çınar. 2022. "Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep" Genes 13, no. 12: 2177. https://doi.org/10.3390/genes13122177
APA StyleArzik, Y., Kizilaslan, M., White, S. N., Piel, L. M. W., & Çınar, M. U. (2022). Genomic Analysis of Gastrointestinal Parasite Resistance in Akkaraman Sheep. Genes, 13(12), 2177. https://doi.org/10.3390/genes13122177