Exploring the Association of HLA Genetic Risk Burden on Thalamic and Hippocampal Atrophy in Multiple Sclerosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrolled Patients
2.2. Genotyping and Imputation
2.3. Selected HLA Loci
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Govaerts, A.; Gony, J.; Martin-Mondière, C.; Poirier, J.C.; Schmid, M.; Schuller, E.; Degos, J.D.; Dausset, J. HLA and multiple sclerosis: Population and families study. Tissue Antigens 1985, 25, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Patsopoulos, N.; Barcellos, L.F.; Hintzen, R.Q.; Schaefer, C.; Van Duijn, C.M.; Noble, J.A.; Raj, T.; Gourraud, P.-A.; Stranger, B.; Oksenberg, J.; et al. Fine-Mapping the Genetic Association of the Major Histocompatibility Complex in Multiple Sclerosis: HLA and Non-HLA Effects. PLoS Genet. 2013, 9, e1003926. [Google Scholar] [CrossRef] [PubMed]
- The International Multiple Sclerosis Genetics Consortium. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat. Genet. 2015, 47, 1107–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef] [Green Version]
- Fisher, E.; Lee, J.-C.; Nakamura, K.; Rudick, R.A. Gray matter atrophy in multiple sclerosis: A longitudinal study. Ann. Neurol. 2008, 64, 255–265. [Google Scholar] [CrossRef]
- Filippi, M.; Preziosa, P.; Copetti, M.; Riccitelli, G.; Horsfield, M.A.; Martinelli, V.; Comi, G.; Rocca, M.A. Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology 2013, 81, 1759–1767. [Google Scholar] [CrossRef]
- Minagar, A.; Barnett, M.H.; Benedict, R.H.; Pelletier, D.; Pirko, I.; Sahraian, M.A.; Frohman, E.; Zivadinov, R. The thalamus and multiple sclerosis: Modern views on pathologic, imaging, and clinical aspects. Neurology 2013, 80, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Rocca, M.A.; Battaglini, M.; Benedict, R.H.; de Stefano, N.; Geurts, J.J.; Henry, R.G.; Horsfield, M.A.; Jenkinson, M.; Pagani, E.; Filippi, M. Brain MRI atrophy quantification in MS: From methods to clinical application. Neurology 2017, 88, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Damjanovic, D.; Valsasina, P.; Rocca, M.; Stromillo, M.; Gallo, A.; Enzinger, C.; Hulst, H.; Rovira, A.; Muhlert, N.; De Stefano, N.; et al. Hippocampal and Deep Gray Matter Nuclei Atrophy Is Relevant for Explaining Cognitive Impairment in MS: A Multicenter Study. Am. J. Neuroradiol. 2017, 38, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Okuda, D.; Srinivasan, R.; Oksenberg, J.R.; Goodin, D.S.; Baranzini, S.E.; Beheshtian, A.; Waubant, E.; Zamvil, S.S.; Leppert, D.; Qualley, P.; et al. Genotype–Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain 2009, 132, 250–259. [Google Scholar] [CrossRef]
- Liguori, M.; Healy, B.C.; I Glanz, B.; Khoury, S.; Moscufo, N.; Weiner, H.L.; De Jager, P.L.; Guttmann, C. HLA (A-B-C and -DRB1) alleles and brain MRI changes in multiple sclerosis: A longitudinal study. Genes Immun. 2011, 12, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lorefice, L.; Fenu, G.; Sardu, C.; Frau, J.; Coghe, G.; Costa, G.; Schirru, L.; Secci, M.A.; Sechi, V.; Barracciu, M.A.; et al. Multiple sclerosis and HLA genotypes: A possible influence on brain atrophy. Mult. Scler. J. 2019, 25, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Isobe, N.; Keshavan, A.; Gourraud, P.-A.; Zhu, A.H.; Datta, E.; Schlaeger, R.; Caillier, S.J.; Santaniello, A.; Lizée, A.; Himmelstein, D.; et al. Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA Neurol. 2016, 73, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Smets, I.; Goris, A.; Vandebergh, M.; Demeestere, J.; Sunaert, S.; Dupont, P.; Dubois, B. Quantitative MRI phenotypes capture biological heterogeneity in multiple sclerosis patients. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bian, B.; Couvy-Duchesne, B.; Wray, N.R.; McRae, A.F. The role of critical immune genes in brain disorders: Insights from neuroimaging immunogenetics. Brain Commun. 2022, 4, fcac078. [Google Scholar] [CrossRef]
- Clarelli, F.; Rocca, M.A.; Santoro, S.; De Meo, E.; Ferrè, L.; Sorosina, M.; Boneschi, F.M.; Esposito, F.; Filippi, M. Assessment of the genetic contribution to brain magnetic resonance imaging lesion load and atrophy measures in multiple sclerosis patients. Eur. J. Neurol. 2021, 28, 2513–2522. [Google Scholar] [CrossRef]
- Jia, X.; Han, B.; Onengut-Gumuscu, S.; Chen, W.-M.; Concannon, P.; Rich, S.S.; Raychaudhuri, S.; De Bakker, P.I. Imputing Amino Acid Polymorphisms in Human Leukocyte Antigens. PLoS ONE 2013, 8, e64683. [Google Scholar] [CrossRef]
- Austin, P.C.; Tu, J.V. Bootstrap Methods for Developing Predictive Models. Am. Stat. 2004, 58, 131–137. [Google Scholar] [CrossRef]
- Mühlau, M.; Andlauer, T.F.M.; Hemmer, B. HLA Genetic Risk Burden in Multiple Sclerosis. JAMA Neurol. 2016, 73, 1500. [Google Scholar] [CrossRef]
- McAllister, A.K. Major Histocompatibility Complex I in Brain Development and Schizophrenia. Biol. Psychiatry 2014, 75, 262–268. [Google Scholar] [CrossRef]
- Corriveau, R.A.; Huh, G.S.; Shatz, C.J. Regulation of Class I MHC Gene Expression in the Developing and Mature CNS by Neural Activity. Neuron 1998, 21, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.; Ontaneda, D. Thalamic Injury and Cognition in Multiple Sclerosis. Front. Neurol. 2020, 11, 623914. [Google Scholar] [CrossRef] [PubMed]
- A Rocca, M.; Mesaros, S.; Pagani, E.; Sormani, M.P.; Comi, G.; Filippi, M. Thalamic Damage and Long-term Progression of Disability in Multiple Sclerosis. Radiology 2010, 257, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Yaldizli, Ö.; Sethi, V.; Pardini, M.; Tur, C.; Mok, K.Y.; Muhlert, N.; Liu, Z.; Samson, R.S.; Wheeler-Kingshott, C.A.; Yousry, T.A.; et al. HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 7, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Graetz, C.; Gröger, A.; Luessi, F.; Salmen, A.; Zöller, D.; Schultz, J.; Siller, N.; Fleischer, V.; Bellenberg, B.; Berthele, A.; et al. Association of smoking but not HLA-DRB1*15:01, APOE or body mass index with brain atrophy in early multiple sclerosis. Mult. Scler. J. 2019, 25, 661–668. [Google Scholar] [CrossRef]
Demographic and Clinical Features | |
---|---|
MS subjects (n) | 334 |
Sex (females:males) | 216:118 |
Age at MRI (years) (mean, range) | 38.8 [18.1, 54.9] |
Disease duration at MRI (years) (mean, range) | 11.2 [0, 34.4] |
Clinical course at MRI (RRMS; SPMS; PPMS) | 253; 49; 32 |
Treated at time of MRI (y/n) | 273/61 |
Treatment at MRI: 1st line; 2nd line; immunosuppressor; other; NA | 169; 70; 21; 5; 8 |
Brain MRI metrics (mL) | |
WMV (mean, range) | 817.4 [553.3, 970.9] |
GMV (mean, range) | 689.4 [433.9, 875.5] |
HippV (mean, range) | 9.2 [5.3, 11.8] |
ThalV (mean, range) | 19.1 [11.9, 23.5] |
T2LV (mean, range) | 8.9 [0.04, 62.2] |
Included Covariates | HLAGB Associations | ||||||||
---|---|---|---|---|---|---|---|---|---|
Brain MRI metrics | Age | Disease | Sex | Course | Treatment | Chip | β | 95%CI | p |
WMV | 100% | 100% | 17% | 56% | 29% | 33% | −2.825 | [−10.831, 5.181] | 0.488 |
GMV | 100% | 100% | 19% | 100% | 35% | 14% | −1.609 | [−10.898, 7.680] | 0.733 |
HippV | 100% | 98% | 100% | 100% | 38% | 28% | −0.142 | [−0.291, 0.008] | 0.064 |
ThalV | 100% | 100% | 77% | 96% | 53% | 32% | −0.299 | [−0.595, −0.004] | 0.047 |
T2LV | 100% | 100% | 19% | 100% | 25% | 42% | 0.746 | [−0.522, 2.014] | 0.248 |
HLAGB Associations in Relapsing–Remitting Patients (n = 253) | HLAGB Associations in Progressive Patients (n = 81) | |||||
---|---|---|---|---|---|---|
Brain MRI metrics | β | 95%CI | p | β | 95%CI | p |
WMV | −2.643 | [−12.050, 6.763] | 0.581 | 0.838 | [−16.357, 18.034] | 0.923 |
GMV | −0.853 | [−11.126, 9.418] | 0.871 | −4.267 | [−25.749, 17.216] | 0.693 |
HippV | −0.123 | [−0.287, 0.041] | 0.141 | −0.239 | [−0.606, 0.128] | 0.198 |
ThalV | −0.201 | [−0.528, −0.126] | 0.226 | −0.673 | [−1.356, 0.009] | 0.053 |
T2LV | 0.847 | [−0.370, 2.066] | 0.171 | 1.289 | [−2.112, 4.689] | 0.453 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, S.; Clarelli, F.; Preziosa, P.; Storelli, L.; Cannizzaro, M.; Mascia, E.; Esposito, F.; Rocca, M.A.; Filippi, M. Exploring the Association of HLA Genetic Risk Burden on Thalamic and Hippocampal Atrophy in Multiple Sclerosis Patients. Genes 2022, 13, 2136. https://doi.org/10.3390/genes13112136
Santoro S, Clarelli F, Preziosa P, Storelli L, Cannizzaro M, Mascia E, Esposito F, Rocca MA, Filippi M. Exploring the Association of HLA Genetic Risk Burden on Thalamic and Hippocampal Atrophy in Multiple Sclerosis Patients. Genes. 2022; 13(11):2136. https://doi.org/10.3390/genes13112136
Chicago/Turabian StyleSantoro, Silvia, Ferdinando Clarelli, Paolo Preziosa, Loredana Storelli, Miryam Cannizzaro, Elisabetta Mascia, Federica Esposito, Maria Assunta Rocca, and Massimo Filippi. 2022. "Exploring the Association of HLA Genetic Risk Burden on Thalamic and Hippocampal Atrophy in Multiple Sclerosis Patients" Genes 13, no. 11: 2136. https://doi.org/10.3390/genes13112136
APA StyleSantoro, S., Clarelli, F., Preziosa, P., Storelli, L., Cannizzaro, M., Mascia, E., Esposito, F., Rocca, M. A., & Filippi, M. (2022). Exploring the Association of HLA Genetic Risk Burden on Thalamic and Hippocampal Atrophy in Multiple Sclerosis Patients. Genes, 13(11), 2136. https://doi.org/10.3390/genes13112136