Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. PkTRAMP Sequence Data
2.2. Sequence Diversity and Natural Selection
2.3. Population Structure and Genetic Differentiation Analysis
3. Results
3.1. PkTRAMP Sequence Identity within Ortholog members and Diversity within P. knowlesi Population
3.2. Amino Acid Haplotype
3.3. Nucleotide Diversity and Polymorphisms
3.4. Natural Selection in PkTRAMP
3.5. Phylogenetic Analysis
3.6. Genetic Differentiation and Population Structure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges. 2020. Available online: www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (accessed on 23 June 2022).
- Ahmed, M.A.; Cox-Singh, J. Plasmodium knowlesi—An emerging pathogen. ISBT Sci. Ser. 2015, 10, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Puri, S.K.; Singh, S.K.; Srivastava, R.; Gupta, R.C.; Pandey, V.C. Characterization of simian malarial parasite (Plasmodium knowlesi)-induced putrescine transport in rhesus monkey erythrocytes. A novel putrescine conjugate arrests in vitro growth of simian malarial parasite (Plasmodium knowlesi) and cures multidrug resistant murine malaria (Plasmodium yoelii) infection in vivo. J. Biol. Chem. 1997, 272, 13506–13511. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Saif, A.; Quan, F.S. Diversity pattern of Plasmodium knowlesi merozoite surface protein 4 (MSP4) in natural population of Malaysia. PLoS ONE 2019, 14, e0224743. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Lau, Y.L.; Quan, F.-S. Diversity and natural selection on the thrombospondin-related adhesive protein (TRAP) gene of Plasmodium knowlesi in Malaysia. Malar. J. 2018, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, M.M.; Ahmed, M.A.; Millar, S.B.; Sanderson, T.; Otto, T.D.; Lu, W.C.; Krishna, S.; Rayner, J.C.; Cox-Singh, J. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism. PLoS ONE 2015, 10, e0121303. [Google Scholar] [CrossRef] [Green Version]
- Moon, R.W.; Hall, J.; Rangkuti, F.; Ho, Y.S.; Almond, N.; Mitchell, G.H.; Pain, A.; Holder, A.A.; Blackman, M.J. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proc. Natl. Acad. Sci. USA 2013, 110, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Barber, B.E.; William, T.; Grigg, M.J.; Yeo, T.W.; Anstey, N.M. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malar. J. 2013, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Azidah, A.K.; Mohd Faizal, M.A.; Lili, H.Y.; Zeehaida, M. Severe Plasmodium knowlesi infection with multiorgan involvement in north east peninsular Malaysia. Trop. Biomed. 2014, 31, 31–35. [Google Scholar]
- Taylor, D.W.; Crum, S.R.; Kramer, K.J.; Siddiqui, W.A. Alterations in the distribution and proliferative responses of rhesus monkey peripheral blood and spleen cells during malaria (Plasmodium knowlesi) infection. Infect. Immun. 1980, 28, 502–507. [Google Scholar] [CrossRef]
- Butcher, G.A.; Mitchell, G.H. The role of Plasmodium knowlesi in the history of malaria research. Parasitology 2018, 145, 6–17. [Google Scholar] [CrossRef]
- Thompson, J.; Cooke, R.E.; Moore, S.; Anderson, L.F.; Janse, C.J.; Waters, A.P. PTRAMP; a conserved Plasmodium thrombospondin-related apical merozoite protein. Mol. Biochem. Parasitol. 2004, 134, 225–232. [Google Scholar] [CrossRef]
- Wengelnik, K.; Spaccapelo, R.; Naitza, S.; Robson, K.J.; Janse, C.J.; Bistoni, F.; Waters, A.P.; Crisanti, A. The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J. 1999, 18, 5195–5204. [Google Scholar] [CrossRef] [Green Version]
- Yap, N.J.; Goh, X.T.; Koehler, A.V.; William, T.; Yeo, T.W.; Vythilingam, I.; Gasser, R.B.; Lim, Y.A. Genetic diversity in the C-terminus of merozoite surface protein 1 among Plasmodium knowlesi isolates from Selangor and Sabah Borneo, Malaysia. Infect. Genet. Evol. 2017, 54, 39–46. [Google Scholar] [CrossRef]
- Mongui, A.; Angel, D.I.; Moreno-Perez, D.A.; Villarreal-Gonzalez, S.; Almonacid, H.; Vanegas, M.; Patarroyo, M.A. Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malar. J. 2010, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, F.A.; Dhawan, S.; Singh, S.; Singh, B.; Gupta, P.; Pandey, A.; Mohmmed, A.; Gaur, D.; Chitnis, C.E. A thrombospondin structural repeat containing rhoptry protein from Plasmodium falciparum mediates erythrocyte invasion. Cell Microbiol. 2013, 15, 1341–1356. [Google Scholar] [CrossRef]
- Green, J.L.; Hinds, L.; Grainger, M.; Knuepfer, E.; Holder, A.A. Plasmodium thrombospondin related apical merozoite protein (PTRAMP) is shed from the surface of merozoites by PfSUB2 upon invasion of erythrocytes. Mol. Biochem. Parasitol. 2006, 150, 114–117. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Earl, D.A.; VonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Pinheiro, M.M.; Divis, P.C.; Siner, A.; Zainudin, R.; Wong, I.T.; Lu, C.W.; Singh-Khaira, S.K.; Millar, S.B.; Lynch, S.; et al. Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members. PLoS Negl. Trop. Dis. 2014, 8, e3086. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Chu, K.B.; Quan, F.S. The Plasmodium knowlesi Pk41 surface protein diversity, natural selection, sub population and geographical clustering: A 6-cysteine protein family member. Peer J. 2018, 6, e6141. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Chu, K.B.; Vythilingam, I.; Quan, F.S. Within-population genetic diversity and population structure of Plasmodium knowlesi merozoite surface protein 1 gene from geographically distinct regions of Malaysia and Thailand. Malar. J. 2018, 17, 442. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.; Fong, M.Y.; Lau, Y.L.; Yusof, R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar. J. 2016, 15, 241. [Google Scholar] [CrossRef] [Green Version]
- Muh, F.; Ahmed, M.A.; Han, J.H.; Nyunt, M.H.; Lee, S.K.; Lau, Y.L.; Kaneko, O.; Han, E.T. Cross-species analysis of apical asparagine-rich protein of Plasmodium vivax and Plasmodium knowlesi. Sci. Rep. 2018, 8, 5781. [Google Scholar] [CrossRef] [Green Version]
- Yusof, R.; Ahmed, M.A.; Jelip, J.; Ngian, H.U.; Mustakim, S.; Hussin, H.M.; Fong, M.Y.; Mahmud, R.; Sitam, F.A.; Japning, J.R.; et al. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia. Emerg. Infect. Dis. 2016, 22, 1371–1380. [Google Scholar] [CrossRef]
Diversity ± SD | Codon-Based z- Test dS-dN | Fu & Li’s D* | Fu & Li’s F* | Taj D | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Location | No. of Samples | SNPs | Syn. | NonSyn. | No. of Haplotypes | Haplotype | Nucleotide | ||||
P. Malaysia | 42 | 30 | 19 | 11 | 27 | 0.971 ± 0.012 | 0.00662 ± 0.00035 | 3.91 | −0.21 | −0.24 | −0.17 |
Sabah | 13 | 20 | 19 | 1 | 12 | 0.987 ± 0.035 | 0.00615 ± 0.00051 | 4.03 | −0.45 | −0.43 | −0.19 |
Sarawak | 42 | 29 | 23 | 6 | 33 | 0.984 ± 0.010 | 0.00457 ± 0.00029 | 3.56 | −2.62 # | −2.48 | −1.09 |
Overall | 97 | 53 | 36 | 17 | 69 | 0.99 ± 0.003 | 0.00652 ± 0.00028 | 4.26 | −2.86 # | −2.61 # | −1.17 |
Locations | Fst Values | ||
---|---|---|---|
Peninsular Malaysia | Sabah | Sarawak | |
Peninsular Malaysia | - | - | - |
Sabah | 0.00045 ± 0.0002 * | - | - |
Sarawak | 0.00038 ± 0.0003 * | 0.01146 ± 0.002 * | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.A.; Zaidi, R.H.; Deshmukh, G.Y.; Saif, A.; Alshahrani, M.A.; Salam, S.S.; Elfaki, M.M.A.; Han, J.-H.; Patgiri, S.J.; Quan, F.-S. Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples. Genes 2022, 13, 1944. https://doi.org/10.3390/genes13111944
Ahmed MA, Zaidi RH, Deshmukh GY, Saif A, Alshahrani MA, Salam SS, Elfaki MMA, Han J-H, Patgiri SJ, Quan F-S. Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples. Genes. 2022; 13(11):1944. https://doi.org/10.3390/genes13111944
Chicago/Turabian StyleAhmed, Md Atique, Rehan Haider Zaidi, Gauspasha Yusuf Deshmukh, Ahmed Saif, Mohammed Abdulrahman Alshahrani, Syeda Sabiha Salam, Mohammed Mohieldien Abbas Elfaki, Jin-Hee Han, Saurav Jyoti Patgiri, and Fu-Shi Quan. 2022. "Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples" Genes 13, no. 11: 1944. https://doi.org/10.3390/genes13111944
APA StyleAhmed, M. A., Zaidi, R. H., Deshmukh, G. Y., Saif, A., Alshahrani, M. A., Salam, S. S., Elfaki, M. M. A., Han, J.-H., Patgiri, S. J., & Quan, F.-S. (2022). Genetic Diversity and Population Genetic Structure Analysis of Plasmodium knowlesi Thrombospondin-Related Apical Merozoite Protein (TRAMP) in Clinical Samples. Genes, 13(11), 1944. https://doi.org/10.3390/genes13111944