Genetic Hearing Loss Affects Cochlear Processing
Abstract
:1. Introduction
2. Patients and Methods
3. Results
3.1. The Cochlear Distortion Factor Depends on the Specific Genes Affected
3.2. Introduction of Two Models
4. Discussion
4.1. Classification of Hearing Loss–New Insight
4.2. Speech-in-Noise Performance and Underlying Pathology: Some Groups Do Well While Others Struggle
4.3. Underlying Psychophysical Variables Explain Speech Understanding
4.4. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoppe, U.; Hast, A.; Hocke, T. Speech perception with hearing aids in comparison to pure-tone hearing loss. HNO 2014, 62, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Parbery-Clark, A.; Yi, H.-G.; Kraus, N. A Neural Basis of Speech-in-Noise Perception in Older Adults. Ear Hear. 2011, 32, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Bosman, A.J.; Smoorenburg, G.F. Intelligibility of Dutch CVC syllables and sentences for listeners with normal hearing and with three types of hearing impairment. Audiology 1995, 34, 260–284. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, K.; Knoop, A.; Boel, C.; Auwers, S.; Schenus, L.; Talaveron-Rodriguez, M.; De Boom, C.; De Sloovere, M. Speech Recognition in Noise by Younger and Older Adults: Effects of Age, Hearing Loss, and Temporal Resolution. Ann. Otol. Rhinol. Laryngol. 2015, 125, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Vermiglio, A.J.; Soli, S.D.; Freed, D.J.; Fisher, L.M. The Relationship between High-Frequency Pure-Tone Hearing Loss, Hearing in Noise Test (HINT) Thresholds, and the Articulation Index. J. Am. Acad. Audiol. 2012, 23, 779–788. [Google Scholar] [CrossRef]
- Humes, L.E.; Kidd, G.R.; Lentz, J.J. Auditory and cognitive factors underlying individual differences in aided speech-understanding among older adults. Front. Syst. Neurosci. 2013, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Kaandorp, M.W.; De Groot, A.M.; Festen, J.M.; Smits, C.; Goverts, S.T. The influence of lexical-access ability and vocabulary knowledge on measures of speech recognition in noise. Int. J. Audiol. 2015, 55, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Pronk, M.; Deeg, D.J.H.; Festen, J.M.; Twisk, J.W.; Smits, C.; Comijs, H.C.; Kramer, S.E. Decline in Older Persons’ Ability to Recognize Speech in Noise: The influence of demographic, health-related, environmental, and cognitive factors. Ear Hear. 2013, 34, 722–732. [Google Scholar] [CrossRef]
- Stam, M.; Smits, C.; Twisk, J.W.R.; Lemke, U.; Festen, J.M.; Kramer, S.E. Deterioration of Speech Recognition Ability Over a Period of 5 Years in Adults Ages 18 to 70 Years: Results of the Dutch Online Speech-in-Noise Test. Ear Hear. 2015, 36, e129–e137. [Google Scholar] [CrossRef]
- Plomp, R. Auditory handicap of hearing impairment and the limited benefit of hearing aids. J. Acoust. Soc. Am. 1978, 63, 533–549. [Google Scholar] [CrossRef]
- Plomp, R.; Mimpen, A.M. Improving the Reliability of Testing the Speech Reception Threshold for Sentences. Int. J. Audiol. 1979, 18, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Bom, S.J.H.; De Leenheer, E.M.R.; Lemaire, F.X.; Kemperman, M.H.; Verhagen, W.I.M.; Marres, H.A.M.; Kunst, H.P.M.; Ensink, R.J.H.; Bosman, A.J.; Van Camp, G.; et al. Speech Recognition Scores Related to Age and Degree of Hearing Impairment in DFNA2/KCNQ4 and DFNA9/COCH. Arch. Otolaryngol.-Head Neck Surg. 2001, 127, 1045–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leijendeckers, J.M.; Pennings, R.J.; Snik, A.F.; Bosman, A.J.; Cremers, C.W. Audiometric Characteristics of USH2a Patients. Audiol. Neurotol. 2009, 14, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, P.G.; Müller, U. Mechanotransduction by Hair Cells: Models, Molecules, and Mechanisms. Cell 2009, 139, 33–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, A.; Salles, F.T.; Pan, B.; Ricci, A.J. Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat. Commun. 2011, 2, 523. [Google Scholar] [CrossRef] [Green Version]
- Lang, H.; Jyothi, V.; Smythe, N.M.; Dubno, J.R.; Schulte, B.A.; Schmiedt, R.A. Chronic Reduction of Endocochlear Potential Reduces Auditory Nerve Activity: Further Confirmation of an Animal Model of Metabolic Presbyacusis. J. Assoc. Res. Otolaryngol. 2010, 11, 419–434. [Google Scholar] [CrossRef] [Green Version]
- Masaki, K.; Gu, J.W.; Ghaffari, R.; Chan, G.; Smith, R.J.; Freeman, D.M.; Aranyosi, A. Col11a2 Deletion Reveals the Molecular Basis for Tectorial Membrane Mechanical Anisotropy. Biophys. J. 2009, 96, 4717–4724. [Google Scholar] [CrossRef] [Green Version]
- Schuknecht, H.F.; Gacek, M.R. Cochlear Pathology in Presbycusis. Ann. Otol. Rhinol. Laryngol. 1993, 102, 1–16. [Google Scholar] [CrossRef]
- Wu, P.; Wen, W.; Ba, J.T.O.; Liberman, M.C. Assessing fractional hair cell survival in archival human temporal bones. Laryngoscope 2019, 130, 487–495. [Google Scholar] [CrossRef]
- Wu, P.-Z.; O’Malley, J.T.; De Gruttola, V.; Liberman, M.C. Age-Related Hearing Loss Is Dominated by Damage to Inner Ear Sensory Cells, Not the Cellular Battery That Powers Them. J. Neurosci. 2020, 40, 6357–6366. [Google Scholar] [CrossRef]
- Wu, P.-Z.; O’Malley, J.T.; de Gruttola, V.; Liberman, M.C. Primary Neural Degeneration in Noise-Exposed Human Cochleas: Correlations with Outer Hair Cell Loss and Word-Discrimination Scores. J. Neurosci. 2021, 41, 4439–4447. [Google Scholar] [CrossRef] [PubMed]
- De Leenheer, E.M.R.; Bosman, A.J.; Huygen, P.L.M.; Kunst, H.P.M.; Cremers, C.W.R.J. Audiological Characteristics of Some Affected Members of a Dutch DFNA13/COL11A2 Family. Ann. Otol. Rhinol. Laryngol. 2004, 113, 922–929. [Google Scholar] [CrossRef] [Green Version]
- Oonk, A.M.M.; Leijendeckers, J.M.; Huygen, P.L.M.; Schraders, M.; del Campo, M.; del Castillo, I.; Tekin, M.; Feenstra, I.; Beynon, A.J.; Kunst, H.P.M.; et al. Similar Phenotypes Caused by Mutations in OTOG and OTOGL. Ear Hear. 2014, 35, e84–e91. [Google Scholar] [CrossRef] [Green Version]
- Oonk, A.; Leijendeckers, J.; Lammers, E.; Weegerink, N.; Oostrik, J.; Beynon, A.; Huygen, P.; Kunst, H.; Kremer, H.; Snik, A.; et al. Progressive hereditary hearing impairment caused by a MYO6 mutation resembles presbyacusis. Hear. Res. 2013, 299, 88–98. [Google Scholar] [CrossRef]
- Plantinga, R.F.; Cremers, C.W.R.J.; Huygen, P.L.M.; Kunst, H.P.M.; Bosman, A.J. Audiological Evaluation of Affected Members from a Dutch DFNA8/12 (TECTA) Family. J. Assoc. Res. Otolaryngol. 2006, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Beelen, E.; Oonk, A.M.M.; Leijendeckers, J.M.; Hoefsloot, E.H.; Pennings, R.J.E.; Feenstra, I.; Dieker, H.-J.; Huygen, P.L.M.; Snik, A.F.M.; Kremer, H.; et al. Audiometric Characteristics of a Dutch DFNA10 Family With Mid-Frequency Hearing Impairment. Ear Hear. 2016, 37, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Van Beelen, E.; Leijendeckers, J.; Admiraal, R.; Huygen, P.; Hoefsloot, L.; Pennings, R.; Snik, A.; Kunst, H. Audiometric Characteristics of a Dutch Family with a New Mutation in GATA3 Causing HDR Syndrome. Audiol. Neurotol. 2014, 19, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Van Beelen, E.; Leijendeckers, J.; Huygen, P.; Admiraal, R.; Hoefsloot, L.; Lichtenbelt, K.; Stöbe, L.; Pennings, R.; Leuwer, R.; Snik, A.; et al. Audiometric characteristics of two Dutch families with non-ocular Stickler syndrome (COL11A2). Hear. Res. 2012, 291, 15–23. [Google Scholar] [CrossRef]
- Weegerink, N.; Schraders, M.; Leijendeckers, J.; Slieker, K.; Huygen, P.; Hoefsloot, L.; Oostrik, J.; Pennings, R.; Simon, A.; Snik, A.; et al. Audiometric characteristics of a Dutch family with Muckle-Wells syndrome. Hear. Res. 2011, 282, 243–251. [Google Scholar] [CrossRef]
- Dillon, H. Hearing Aids, 2nd ed.; Thieme: Sydney, Australia, 2012. [Google Scholar]
- Humes, L.E.; Dubno, J.R. Factors Affecting Speech Understanding in Older Adults. In The Aging Auditory System; Springer Handbook of Auditory Research; Gordon-Salant, S., Frisina, R.D., Popper, A.N., Fay, R.R., Eds.; Springer: New York, NY, USA, 2010; pp. 211–257. [Google Scholar] [CrossRef]
- Amlani, A.M.; Punch, J.L.; Ching, T. Methods and Applications of the Audibility Index in Hearing Aid Selection and Fitting. Trends Amplif. 2002, 6, 81–129. [Google Scholar] [CrossRef] [Green Version]
- Killion, M.C.; Christensen, L.A. The case of the missing dots: Al and SNR loss. Hear. J. 1998, 51, 32. [Google Scholar] [CrossRef]
- Mazzoli, M.G.; Van Camp, G.U.; Newton, V.; Giarbini, N.; Declau, F.; Parving, A. Recommendations for the description of genetic and audiological data for families with nonsyndromic hereditary hearing impairment. Audiol. Med. 2003, 1, 148–150. [Google Scholar] [CrossRef]
- Nishio, S.-Y.; Hattori, M.; Moteki, H.; Tsukada, K.; Miyagawa, M.; Naito, T.; Yoshimura, H.; Iwasa, Y.-I.; Mori, K.; Shima, Y.; et al. Gene Expression Profiles of the Cochlea and Vestibular Endorgans: Localization and function of genes causing deafness. Ann. Otol. Rhinol. Laryngol. 2015, 124, 6S–48S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Esch, T.E.M.; Dreschler, W.A. Relations Between the Intelligibility of Speech in Noise and Psychophysical Measures of Hearing Measured in Four Languages Using the Auditory Profile Test Battery. Trends Hear. 2015, 19. [Google Scholar] [CrossRef] [Green Version]
- Dryden, A.; Allen, H.A.; Henshaw, H.; Heinrich, A. The Association Between Cognitive Performance and Speech-in-Noise Perception for Adult Listeners: A Systematic Literature Review and Meta-Analysis. Trends Hear. 2017, 21. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, A.; Henshaw, H.; Ferguson, M.A. The relationship of speech intelligibility with hearing sensitivity, cognition, and perceived hearing difficulties varies for different speech perception tests. Front. Psychol. 2015, 6, 782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.-Y. Pathophysiology of Age-Related Hearing Loss (Peripheral and Central). Korean J. Audiol. 2013, 17, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Ohlemiller, K.K. Age-related hearing loss: The status of Schuknecht’s typology. Curr. Opin. Otolaryngol. Head Neck Surg. 2004, 12, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Avan, P.; Le Gal, S.; Michel, V.; Dupont, T.; Hardelin, J.-P.; Petit, C.; Verpy, E. Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane. Proc. Natl. Acad. Sci. USA 2019, 116, 25948–25957. [Google Scholar] [CrossRef]
- Houtgast, T.; Festen, J.M. On the auditory and cognitive functions that may explain an individual’s elevation of the speech reception threshold in noise. Int. J. Audiol. 2008, 47, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kidd, G.R.; Watson, C.S.; Gygi, B. Individual differences in auditory abilities. J. Acoust. Soc. Am. 2007, 122, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Hartel, B.P.; Löfgren, M.; Huygen, P.L.M.; Guchelaar, I.; Lo-A-Njoe Kort, N.; Sadeghi, A.M.; van Wijk, E.; Tranebjærg, L.; Kremer, H.; Kimberling, W.J.; et al. A combination of two truncating mutations in USH2A causes more severe and progressive hearing impairment in Usher syndrome type IIa. Hear. Res. 2016, 339, 60–68. [Google Scholar] [CrossRef]
- Robijn, S.M.M.; Smits, J.J.; Sezer, K.; Huygen, P.L.M.; Beynon, A.J.; van Wijk, E.; Kremer, H.; de Vrieze, E.; Lanting, C.P.; Pennings, R.J.E. Genotype-Phenotype Correlations of Pathogenic COCH Variants in DFNA9: A HuGE Systematic Review and Audiometric Meta-Analysis. Biomolecules 2022, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.M.; Cohn, E.S.; Kimberling, W.J.; Halvarsson, G.; Möller, C. Expressivity of hearing loss in cases with Usher syndrome type IIA. Int. J. Audiol. 2013, 52, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Lad, M.; Holmes, E.; Chu, A.; Griffiths, T.D. Speech-in-noise detection is related to auditory working memory precision for frequency. Sci. Rep. 2020, 10, 13997. [Google Scholar] [CrossRef]
- Ray, J.; Popli, G.; Fell, G. Association of Cognition and Age-Related Hearing Impairment in the English Longitudinal Study of Ageing. JAMA Otolaryngol. Neck Surg. 2018, 144, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Van Esch, T.E.M.; Kollmeier, B.; Vormann, M.; Lyzenga, J.; Houtgast, T.; Hallgren, M.; Larsby, B.; Athalye, S.P.; Lutman, M.E.; Dreschler, W.A. Evaluation of the preliminary auditory profile test battery in an international multi-centre study. Int. J. Audiol. 2013, 52, 305–321. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lopez, R.; Nielsen, S.G.; El-Haj-Ali, M.; Bianchi, F.; Fereczkowski, M.; Cañete, O.M.; Wu, M.; Neher, T.; Dau, T.; Santurette, S. Auditory Tests for Characterizing Hearing Deficits in Listeners With Various Hearing Abilities: The BEAR Test Battery. Front. Neurosci. 2021, 15, 724007. [Google Scholar] [CrossRef] [PubMed]
- Isherwood, B.; Gonçalves, A.C.; Cousins, R.; Holme, R. The global hearing therapeutic pipeline: 2021. Drug Discov. Today 2021, 27, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Rüttiger, L.; Zimmermann, U.; Knipper, M. Biomarkers for Hearing Dysfunction: Facts and Outlook. ORL 2017, 79, 93–111. [Google Scholar] [CrossRef] [PubMed]
Deafness Type | Gene | Mutation | Severity | GENDEAF | Progression | Loudness Perception | Acoustic Reflexes | Gap Detection | DLF | SRT | Description | Site-of-Lesion (Suggested or Presumed) | Vestibular |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DFNA13 | COL11A2 | c.2423G > A (p.Gly808Glu) | mild to moderate/severe | Early in life low-middle frequencies; later bilateral gently to steeply sloping | no | LDL higher than normal; loudness growth comparable to NH | Elevated compared to NH (esp 2–4 kHz) | normal in younger subjects | normal in younger subjects | normal in younger subjects | cochlear conductive | Tectorial membrane | na |
Non-ocular Stickler syndrome | COL11A2 | c.3659G > A (p.Gly1220Asp) | mild to moderate/severe | gently to steeply sloping high-frequency HL. | no | loudness growth comparable to NH | na | slightly increased | increased | increased but better than presbyacusis | cochlear conductive | Tectorial membrane | na |
DFNA8/12 | TECTA | c.5668C > T (p.Arg1890Cys) | mild to moderate | bilateral mid-frequency U-shaped | no | LDL higher than normal; loudness growth comparable to NH | Elevated compared to NH | except one subject normal | normal in all but one | except one subject close to normal | cochlear conductive | Tectorial membrane | na |
Muckle-Wells syndrome | NLRP3 | c.2575T > C (p.Tyr859His) | moderate to severe | gently to steeply sloping high-frequency HL. | 1.3–1.8 dB/year | loudness growth steeper than NH at 2 kHz | na | normal | increased | close to normal | cochlear conductive | Basilar membrane | variable |
DFNA18B/84B | OTOG & OTOGL | c.547C > T (p.Arg183X) & c. 5238+5G > A) c.1430delT (p.Val477Glufs*25) c.5508delC (p.Ala1838ProfsX31) c.6347C > T (p.Pro2116Leu) & c.6559C > T (p.Arg2187X) | mild to moderate | gently donwsloping | no in 3 families; 0.53–1.17 dB in two individuals | loudness growth steeper than NH at 2 kHz | normal | slightly increased | slightly increased | increased but better than presbyacusis | sensory | Tectorial membrane/connection with stereocilia | hyporeflexia & delayed motor development |
DFNA22 | MYO6 | c.3610C > T (pR1204W) | mild to severe | gently to steeply sloping high-frequency HL. | Similar to presbyacusis | loudness growth steeper than NH at 2 kHz | na | normal | normal | increased but better than presbyacusis | sensory | Stereocilia of the hair cell | except one subject with hyporeflexia left normal vestibular function |
Usher syndrome type 2a | USH2A | see Table 1 of the publication for the various mutations | moderate to severe | gently to steeply sloping high-frequency HL. | na | loudness growth steeper than NH at 2 kHz | na | increased tresholds | increased | increased; similar to prebyacusis | sensory | Hair cells bundle links | na |
HDR syndrome | GATA3 | c523_528dup (p.Gln178ProfsX19) | mild to moderate | gently donwsloping | no | loudness growth steeper than NH | na | increased tresholds | slightly increased | increased but better than presbyacusis | sensory | Hair cells (OHCs) | normal |
DFNA10 | EYA4 | c.464del (p.Pro155fs*) c.1810G > T (p.Gly604Cys) | mild to moderate | bilateral mid-frequency U-shaped, some an additional high-frequency moderate hearing loss | 0.5–1.6 dB/year | loudness growth steeper than NH | na | increased tresholds | unpublished | increased | sensory | Hair cells & stria vascularis | normal |
Type of Genetic Hearing Loss | Age, in Yrs. (Range) | PTA (0.5–4.0 kHz) in dB HL (Range) | Audibility-Corrected Cochlear Distortion Factor (CDF) in dB (Range) |
---|---|---|---|
DFNA8/12 | 37 (27–45) | 40 (33–53) | 1.5 (0.9–2.4) |
DFNA10 | 52 (31–65) | 62 (60–65) | 4.1 (4.6–6.0) |
DFNA13 | 44 (34–63) | 39 (33–48) | 1.5 (0.6–2.6) |
DFNA22 | 60 (53–66) | 41 (36–46) | 3.0 (2.5–4.1) |
DFNB18B | 19 (18–20) | 43 | 3.6 (3.1–4.1) |
Usher syndrome type 2a | 40 (28–59) | 52 (41–69) | 5.6 (3.8–9.2) |
Muckle Wells syndrome | 21 | 60 | 6.6 |
Non-ocular Stickler syndrome | 58 (44–68) | 52 (46–58) | 4.1 (2.9–5.7) |
HDR syndrome | 38 (25–56) | 54 (51–57) | 3.6 (2.0–4.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanting, C.; Snik, A.; Leijendeckers, J.; Bosman, A.; Pennings, R. Genetic Hearing Loss Affects Cochlear Processing. Genes 2022, 13, 1923. https://doi.org/10.3390/genes13111923
Lanting C, Snik A, Leijendeckers J, Bosman A, Pennings R. Genetic Hearing Loss Affects Cochlear Processing. Genes. 2022; 13(11):1923. https://doi.org/10.3390/genes13111923
Chicago/Turabian StyleLanting, Cris, Ad Snik, Joop Leijendeckers, Arjan Bosman, and Ronald Pennings. 2022. "Genetic Hearing Loss Affects Cochlear Processing" Genes 13, no. 11: 1923. https://doi.org/10.3390/genes13111923
APA StyleLanting, C., Snik, A., Leijendeckers, J., Bosman, A., & Pennings, R. (2022). Genetic Hearing Loss Affects Cochlear Processing. Genes, 13(11), 1923. https://doi.org/10.3390/genes13111923