Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Phenotype Assignment
2.2. DNA Isolation and Genotyping
2.3. Imputation
2.4. Genome-Wide Association Study
2.5. Gene-Based Association Study
2.6. Whole Genome Sequence Analysis
3. Results
3.1. Phenotype
3.2. Genome-Wide Association Study
3.3. Linkage Disequilibrium and Associated Haplotypes
3.4. Annotation of Significant SNPs to Genes and Gene-Based Association Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huson, H.J.; Parker, H.G.; Runstadler, J.; Ostrander, E.A. A genetic dissection of breed composition and performance enhancement in the Alaskan sled dog. BMC Genet. 2010, 11, 71. [Google Scholar] [CrossRef] [PubMed]
- Huson, H.J.; Vonholdt, B.M.; Rimbault, M.; Byers, A.M.; Runstadler, J.A.; Parker, H.G.; Ostrander, E.A. Breed-specific ancestry studies and genome-wide association analysis highlight an association between the MYH9 gene and heat tolerance in Alaskan sprint racing sled dogs. Mamm. Genome 2012, 23, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Tosi, I.; Art, T.; Boemer, F.; Votion, D.-M.; Davis, M.S. Acylcarnitine profile in Alaskan sled dogs during submaximal multiday exercise points out metabolic flexibility and liver role in energy metabolism. PLoS ONE 2021, 16, e0256009. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hendriks, J. Inherited laryngeal paralysis. Analysis in the husky cross. Vet. Q. 1986, 8, 301–302. [Google Scholar] [CrossRef]
- Von Pfeil, D.J.; Zellner, E.; Fritz, M.C.; Langohr, I.; Griffitts, C.; Stanley, B.J. Congenital laryngeal paralysis in Alaskan Huskies: 25 cases (2009–2014). J. Am. Vet. Med. Assoc. 2018, 253, 1057–1065. [Google Scholar] [CrossRef]
- Stanley, B.J.; Hauptman, J.G.; Fritz, M.C.; Rosenstein, D.S.; Kinns, J. Esophageal dysfunction in dogs with idiopathic laryngeal paralysis: A controlled cohort study. Vet. Surg. 2010, 39, 139–149. [Google Scholar] [CrossRef]
- Polizopoulou, Z.; Koutinas, A.; Papadopoulos, G.; Saridomichelakis, M. Juvenile laryngeal paralysis in three Siberian husky x Alaskan malamute puppies. Vet. Rec. 2003, 153, 624–627. [Google Scholar] [CrossRef]
- Ubbink, G.; Knol, B.; Bouw, J. The relationship between homozygosity and the occurrence of specific diseases in Bouvier Belge des Flandres dogs in the Netherlands: Inbreeding and disease in the bouvier dog. Vet. Q. 1992, 14, 137–140. [Google Scholar] [CrossRef]
- Venker-van Haagen, A.; Bouw, J.; Hartman, W. Hereditary transmission of laryngeal paralysis in Bouviers. J. Am. Anim. Hosp. Assoc. 1981, 17, 75–76. [Google Scholar]
- Camargo, J.F.; Teixeira, L.G.; Trindade-Gerardi, A.B.; Dos Santos, B.S.; da Rosa, M.P.; Paim, M.G.; Contesini, E.A. Laryngeal Paralysis Following Endotracheal Intubation in a Dog: A Case Report. Top. Companion Anim. Med. 2022, 48, 100635. [Google Scholar] [CrossRef]
- MacPhail, C. Laryngeal disease in dogs and cats. Vet. Clin. Small Anim. Pract. 2014, 44, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Letko, A.; Minor, K.M.; Friedenberg, S.G.; Shelton, G.D.; Salvador, J.P.; Mandigers, P.J.; Leegwater, P.A.; Winkler, P.A.; Petersen-Jones, S.M.; Stanley, B.J. A CNTNAP1 Missense Variant Is Associated with Canine Laryngeal Paralysis and Polyneuropathy. Genes 2020, 11, 1426. [Google Scholar] [CrossRef] [PubMed]
- Hadji Rasouliha, S.; Barrientos, L.; Anderegg, L.; Klesty, C.; Lorenz, J.; Chevallier, L.; Jagannathan, V.; Rösch, S.; Leeb, T. A RAPGEF6 variant constitutes a major risk factor for laryngeal paralysis in dogs. PLoS Genet. 2019, 15, e1008416. [Google Scholar] [CrossRef] [PubMed]
- Broome, C.; Burbidge, H.; Pfeiffer, D. Prevalence of laryngeal paresis in dogs undergoing general anaesthesia. Aust. Vet. J. 2000, 78, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Tobias, K.M.; Jackson, A.M.; Harvey, R.C. Effects of doxapram HCl on laryngeal function of normal dogs and dogs with naturally occurring laryngeal paralysis. Vet. Anaesth. Analg. 2004, 31, 258–263. [Google Scholar] [CrossRef]
- Monnet, E. Surgical treatment of laryngeal paralysis. Vet. Clin. Small Anim. Pract. 2016, 46, 709–717. [Google Scholar] [CrossRef]
- von Pfeil, D.J.; Edwards, M.R.; Déjardin, L.M. Less invasive unilateral arytenoid lateralization: A modified technique for treatment of idiopathic laryngeal paralysis in dogs: Technique description and outcome. Vet. Surg. 2014, 43, 704–711. [Google Scholar] [CrossRef]
- Moe, L.; Bjerkås, I. Hereditary polyneuropathy of alaskan malamutes. In Kirks Current Veterinary Therapy XI; Saunders: Philadelphia, PA, USA, 1992; pp. 1038–1039. [Google Scholar]
- Braund, K.; Steinberg, H.; Shores, A.; Steiss, J.; Mehta, J.; Toivio-Kinnucan, M.; Amling, K. Laryngeal paralysis in immature and mature dogs as one sign of a more diffuse polyneuropathy. J. Am. Vet. Med. Assoc. 1989, 194, 1735–1740. [Google Scholar]
- Venker van Haagen, A.; Hartman, W.; Goedegebuure, S. Spontaneous laryngeal paralysis in young bouviers [Dogs]. J. Am. Anim. Hosp. Assoc. 1978, 14, 714–720. [Google Scholar]
- Harvey, C.; O’Brien, J. Upper airway obstruction surgery. 5. Treatment of laryngeal paralysis in dogs by partial laryngectomy. J. Am. Anim. Hosp. Assoc. 1982, 18, 551–556. [Google Scholar]
- Shelton, G.D.; Podell, M.; Poncelet, L.; Schatzberg, S.; Patterson, E.; Powell, H.C.; Mizisin, A.P. Inherited polyneuropathy in Leonberger dogs: A mixed or intermediate form of Charcot-Marie-Tooth disease? Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2003, 27, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Shores, A.; Cochrané ihrFFjâte, S. Laryngeal paralysis-polyneuropathy complex in young Dalmatians. Am. J. Vet. Res. 1994, 55, 534–542. [Google Scholar]
- Gabriel, A.; Poncelet, L.; Van Ham, L.; Clercx, C.; Braund, K.; Bhatti, S.; Detilleux, J.; Peeters, D. Laryngeal paralysis-polyneuropathy complex in young related Pyrenean mountain dogs. J. Small Anim. Pract. 2006, 47, 144–149. [Google Scholar] [CrossRef]
- Mahony, O.M.; Knowles, K.E.; Braund, K.G.; Averill, D.R., Jr.; Frimberger, A.E. Laryngeal paralysis-polyneuropathy complex in young Rottweilers. J. Vet. Intern. Med. 1998, 12, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, C.; Tartarelli, C.; Baroni, M.; Mizisin, A.; Cantile, C. Peripheral nerve pathology in two Rottweilers with neuronal vacuolation and spinocerebellar degeneration. Vet. Pathol. 2005, 42, 852–855. [Google Scholar] [CrossRef] [PubMed]
- McKeirnan, K.L.; Gross, M.E.; Rochat, M.; Payton, M. Comparison of propofol and propofol/ketamine anesthesia for evaluation of laryngeal function in healthy dogs. J. Am. Anim. Hosp. Assoc. 2014, 50, 19–26. [Google Scholar] [CrossRef]
- Becker, D.; Minor, K.M.; Letko, A.; Ekenstedt, K.J.; Jagannathan, V.; Leeb, T.; Shelton, G.D.; Mickelson, J.R.; Drögemüller, C. A GJA9 frameshift variant is associated with polyneuropathy in Leonberger dogs. BMC Genom. 2017, 18, 662. [Google Scholar] [CrossRef]
- Ekenstedt, K.J.; Becker, D.; Minor, K.M.; Shelton, G.D.; Patterson, E.E.; Bley, T.; Oevermann, A.; Bilzer, T.; Leeb, T.; Drögemüller, C. An ARHGEF10 deletion is highly associated with a juvenile-onset inherited polyneuropathy in Leonberger and Saint Bernard dogs. PLoS Genet. 2014, 10, e1004635. [Google Scholar] [CrossRef] [PubMed]
- Wiedmer, M.; Oevermann, A.; Borer-Germann, S.E.; Gorgas, D.; Shelton, G.D.; Drögemüller, M.; Jagannathan, V.; Henke, D.; Leeb, T. A RAB3GAP1 SINE insertion in Alaskan huskies with polyneuropathy, ocular abnormalities, and neuronal vacuolation (POANV) resembling human Warburg micro syndrome 1 (WARBM1). G3 Genes Genomes Genet. 2016, 6, 255–262. [Google Scholar] [CrossRef]
- Bruun, C.S.; Jäderlund, K.H.; Berendt, M.; Jensen, K.B.; Spodsberg, E.H.; Gredal, H.; Shelton, G.D.; Mickelson, J.R.; Minor, K.M.; Lohi, H. A Gly98Val mutation in the N-Myc downstream regulated gene 1 (NDRG1) in Alaskan Malamutes with polyneuropathy. PLoS ONE 2013, 8, e54547. [Google Scholar] [CrossRef]
- Maurya, R.; Kumar, B.; Sundar, S. Evaluation of salt-out method for the isolation of DNA from whole blood: A pathological approach of DNA based diagnosis. Int. J. Life Sci. Biotechnol. Pharma. Res. 2013, 2, 53–57. [Google Scholar]
- Deane-Coe, P.E.; Chu, E.T.; Slavney, A.; Boyko, A.R.; Sams, A.J. Direct-to-consumer DNA testing of 6,000 dogs reveals 98.6-kb duplication associated with blue eyes and heterochromia in Siberian Huskies. PLoS Genet. 2018, 14, e1007648. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, s13742-015. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schönherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A one-penny imputed genome from next-generation reference panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Ramnarine, S.; Zhang, J.; Chen, L.-S.; Culverhouse, R.; Duan, W.; Hancock, D.B.; Hartz, S.M.; Johnson, E.O.; Olfson, E.; Schwantes-An, T.-H. When does choice of accuracy measure alter imputation accuracy assessments? PLoS ONE 2015, 10, e0137601. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Achuthan, P.; Akanni, W.; Amode, M.R.; Barrell, D.; Bhai, J.; Billis, K.; Cummins, C.; Gall, A.; Girón, C.G. Ensembl 2018. Nucleic Acids Res. 2018, 46, D754–D761. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Srikanth, K.; Lee, S.-H.; Chung, K.-Y.; Park, J.-E.; Jang, G.-W.; Park, M.-R.; Kim, N.Y.; Kim, T.-H.; Chai, H.-H.; Park, W.C. A gene-set enrichment and protein–protein interaction network-based GWAS with regulatory SNPs identifies candidate genes and pathways associated with carcass traits in hanwoo cattle. Genes 2020, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X. rMVP: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http://www.R-project.org/ (accessed on 17 April 2022).
- De Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.; Zhu, Z.; Vinkhuyzen, A.A.; Hill, W.D.; McRae, A.F.; Visscher, P.M.; Yang, J. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci. Rep. 2016, 6, 32894. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, K.; Kim, N.-Y.; Park, W.; Kim, J.-M.; Kim, K.-D.; Lee, K.-T.; Son, J.-H.; Chai, H.-H.; Choi, J.-W.; Jang, G.-W. Comprehensive genome and transcriptome analyses reveal genetic relationship, selection signature, and transcriptome landscape of small-sized Korean native Jeju horse. Sci. Rep. 2019, 9, 16672. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J. From FastQ data to high-confidence variant calls: The genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Mallarino, R.; Henegar, C.; Mirasierra, M.; Manceau, M.; Schradin, C.; Vallejo, M.; Beronja, S.; Barsh, G.S.; Hoekstra, H.E. Developmental mechanisms of stripe patterns in rodents. Nature 2016, 539, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Beverdam, A.; Brouwer, A.; Reijnen, M.; Korving, J.; Meijlink, F. Severe nasal clefting and abnormal embryonic apoptosis in Alx3/Alx4 double mutant mice. Development 2001, 128, 3975–3986. [Google Scholar] [CrossRef]
- Curtain, M.; Heffner, C.S.; Maddox, D.M.; Gudis, P.; Donahue, L.R.; Murray, S.A. A novel allele of Alx4 results in reduced Fgf10 expression and failure of eyelid fusion in mice. Mamm. Genome 2015, 26, 173–180. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Romeike, B.F.; Shen, Y.; Nishimoto, H.K.; Morton, C.C.; Layman, L.C.; Kim, H.-G. Spectrum of genes involved in a unique case of Potocki Schaffer syndrome with a large chromosome 11 deletion. Clin. Neuropathol. 2014, 33, 238. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tyagi, R.; Shenoy, A.R.; Visweswariah, S.S. Characterization of an evolutionarily conserved metallophosphoesterase that is expressed in the fetal brain and associated with the WAGR syndrome. J. Biol. Chem. 2009, 284, 5217–5228. [Google Scholar] [CrossRef] [PubMed]
- Brémond-Gignac, D.; Crolla, J.A.; Copin, H.; Guichet, A.; Bonneau, D.; Taine, L.; Lacombe, D.; Baumann, C.; Benzacken, B.; Verloes, A. Combination of WAGR and Potocki–Shaffer contiguous deletion syndromes in a patient with an 11p11. 2–p14 deletion. Eur. J. Hum. Genet. 2005, 13, 409–413. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Su, B. GWAS-identified schizophrenia risk SNPs at TSPAN18 are highly diverged between Europeans and East Asians. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 1032–1040. [Google Scholar] [CrossRef]
- Pannier, S.; Legeai-Mallet, L. Hereditary multiple exostoses and enchondromatosis. Best Pract. Res. Clin. Rheumatol. 2008, 22, 45–54. [Google Scholar] [CrossRef]
- Shokraeian, P.; Daneshmandpour, Y.; Jamshidi, J.; Emamalizadeh, B.; Darvish, H. Genetic analysis of rs11038167, rs11038172 and rs835784 polymorphisms of the TSPAN18 gene in Iranian schizophrenia patients. Meta Gene 2019, 22, 100609. [Google Scholar] [CrossRef]
- Garay, P.M.; Wallner, M.A.; Iwase, S. Yin–yang actions of histone methylation regulatory complexes in the brain. Epigenomics 2016, 8, 1689–1708. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-Y.; Aromolaran, K.A.; Zukin, R.S. The emerging field of epigenetics in neurodegeneration and neuroprotection. Nat. Rev. Neurosci. 2017, 18, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Südhof, T.C. Synaptotagmins: Why so many? J. Biol. Chem. 2002, 277, 7629–7632. [Google Scholar] [CrossRef] [PubMed]
- Nizzardo, M.; Taiana, M.; Rizzo, F.; Aguila Benitez, J.; Nijssen, J.; Allodi, I.; Melzi, V.; Bresolin, N.; Comi, G.; Hedlund, E. Synaptotagmin 13 is neuroprotective across motor neuron diseases. Acta Neuropathol. 2020, 139, 837–853. [Google Scholar] [CrossRef] [PubMed]
- Abad-Rodríguez, J.; Díez-Revuelta, N. Axon glycoprotein routing in nerve polarity, function, and repair. Trends Biochem. Sci. 2015, 40, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Esko, J.D.; Selleck, S.B. Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 2002, 71, 435–471. [Google Scholar] [CrossRef]
Putative Risk Haplotype (CFA 18:44502007–45132398) | ||||
---|---|---|---|---|
CLP Status | N | Homozygous Alternative | Heterozygous | Homozygous Risk |
Affected | 20 | 2/20 | 0/20 | 18/20 |
Unaffected | 205 | 9/40 | 21/40 | 0/40 |
Term/Pathway | Q-Value 1 | Genes |
---|---|---|
Cholinergic synapse | 0.002 | GNG4, CREB3L1, KCNQ1 |
Glycosaminoglycan biosynthesis | 0.010 | EXT2, CHST1 |
Glycerolipid metabolism | 0.010 | DGKZ, PNPLA2 |
Glycoprotein | 0.010 | EXT2, CD82, CREB3L1, TSPAN18, PNPLA2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srikanth, K.; von Pfeil, D.J.F.; Stanley, B.J.; Griffitts, C.; Huson, H.J. Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs. Genes 2022, 13, 1808. https://doi.org/10.3390/genes13101808
Srikanth K, von Pfeil DJF, Stanley BJ, Griffitts C, Huson HJ. Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs. Genes. 2022; 13(10):1808. https://doi.org/10.3390/genes13101808
Chicago/Turabian StyleSrikanth, Krishnamoorthy, Dirsko J. F. von Pfeil, Bryden J. Stanley, Caroline Griffitts, and Heather J. Huson. 2022. "Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs" Genes 13, no. 10: 1808. https://doi.org/10.3390/genes13101808
APA StyleSrikanth, K., von Pfeil, D. J. F., Stanley, B. J., Griffitts, C., & Huson, H. J. (2022). Genome Wide Association Study with Imputed Whole Genome Sequence Data Identifies a 431 kb Risk Haplotype on CFA18 for Congenital Laryngeal Paralysis in Alaskan Sled Dogs. Genes, 13(10), 1808. https://doi.org/10.3390/genes13101808