Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Network Construction
2.3. Residual Graph Convolutional Neural Network
Algorithm 1 ERGCN |
Input: Gene expression matrix with m number of samples whose vector length is n, corresponding true labels , number of epochs e, learning rate , dropout rate d. Output: Predicted labels Y. 1.Use Equation (1) to calculate the correlation between samples based on gene expression data to get the correlation matrix A (m * m). 2.Given a threshold , set the value of the matrix A greater than to 1, and set other values to 0 to obtain the adjacency matrix (m * m). 3.For i = 1 to epochs do: H(1) =ReLU( GCN1(X, ) H(p) = H(1) + ReLU(linear(X)) H(2) = GCN2(H(p), ) out = Softmax(H(2)) Calculate the Loss by Equation (4). Update the weights of ERGCN by gradient descent and back propagation. end for 4.H(1) =ReLU( GCN1(X, ) 5.H(p) = H(1) + ReLU(linear(X)) 6.H(2) = GCN2(H(p), ) 7.out = Softmax(H(2)) 8.Labels = out.max(dim = 1) 9.Return labels |
2.4. Experimental Parameters
2.5. Assessing the Performance
2.5.1. External Evaluation Metrics
2.5.2. Internal Evaluation Metrics
3. Results
3.1. Determination of Correlation Coefficient Threshold
3.2. Results of External Evaluation Metrics
3.3. Results of Internal Evaluation Metrics
3.4. Experiments with New Samples
Methods | Precision | Recall | F1 Score | Accuracy | ARI | MCC |
---|---|---|---|---|---|---|
SAE+SVM | 0.75693 | 0.54044 | 0.52594 | 0.72549 | 0.44104 | 0.57753 |
SAE+Gcforest | 0.62501 | 0.55515 | 0.53656 | 0.73529 | 0.48863 | 0.59049 |
VAE+SVM | 0.70438 | 0.68683 | 0.69412 | 0.75490 | 0.49052 | 0.62384 |
VAE+Gcforest | 0.66973 | 0.65040 | 0.65643 | 0.76471 | 0.57447 | 0.63682 |
SVM | 0.63776 | 0.51471 | 0.46261 | 0.72549 | 0.44240 | 0.59148 |
Gcforest | 0.84364 | 0.64338 | 0.64064 | 0.79411 | 0.56589 | 0.68464 |
Random Forest | 0.82441 | 0.62868 | 0.62397 | 0.78431 | 0.56030 | 0.66815 |
GCN+PPI | 0.76280 | 0.68873 | 0.70813 | 0.79808 | 0.57397 | 0.69049 |
ERGCN | 0.74755 | 0.73884 | 0.73962 | 0.80392 | 0.62150 | 0.71075 |
Methods | Precision | Recall | F1 Score | Accuracy | ARI | MCC |
---|---|---|---|---|---|---|
SAE+SVM | 0.81642 | 0.81625 | 0.81538 | 0.81221 | 0.55023 | 0.74629 |
SAE+Gcforest | 0.82595 | 0.82933 | 0.82708 | 0.82629 | 0.58206 | 0.76532 |
VAE+SVM | 0.78944 | 0.78534 | 0.78682 | 0.79343 | 0.52562 | 0.72020 |
VAE+Gcforest | 0.76416 | 0.75092 | 0.75601 | 0.76526 | 0.47159 | 0.68126 |
SVM | 0.83590 | 0.82663 | 0.82985 | 0.83098 | 0.59225 | 0.77148 |
Gcforest | 0.85550 | 0.80886 | 0.82051 | 0.83568 | 0.61514 | 0.77803 |
Random Forest | 0.83445 | 0.80664 | 0.81572 | 0.82629 | 0.59218 | 0.76426 |
GCN+PPI | 0.81691 | 0.81481 | 0.81547 | 0.82160 | 0.57898 | 0.75841 |
ERGCN | 0.84325 | 0.84021 | 0.84090 | 0.84977 | 0.64856 | 0.79738 |
Methods | Precision | Recall | F1 Score | Accuracy | ARI | MCC |
---|---|---|---|---|---|---|
SAE+SVM | 0.53594 | 0.53283 | 0.49398 | 0.68235 | 0.41481 | 0.55207 |
SAE+Gcforest | 0.65871 | 0.53268 | 0.52984 | 0.65882 | 0.34749 | 0.50912 |
VAE+SVM | 0.78690 | 0.74056 | 0.75152 | 0.81176 | 0.63649 | 0.73533 |
VAE+Gcforest | 0.63186 | 0.61147 | 0.60847 | 0.71764 | 0.52313 | 0.59664 |
SVM | 0.58994 | 0.55804 | 0.52567 | 0.70588 | 0.46454 | 0.59018 |
Gcforest | 0.84865 | 0.65167 | 0.63457 | 0.77647 | 0.58815 | 0.69397 |
Random Forest | 0.58994 | 0.68130 | 0.63430 | 0.76235 | 0.56768 | 0.68308 |
GCN+PPI | 0.61656 | 0.54185 | 0.55348 | 0.61176 | 0.23225 | 0.43827 |
ERGCN | 0.79367 | 0.78810 | 0.78903 | 0.82353 | 0.64861 | 0.75297 |
3.5. Survival Analysis
3.6. Ablation Study
3.7. Analyzing Key Genes of Breast Cancer Subtypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.J.; Yao, J.; Yang, L.; Chen, R.P.; Nowak, N.J.; Goodison, S. Computational Approach for Deriving Cancer Progression Roadmaps from Static Sample Data. Nucleic Acids Res. 2017, 45, 16. [Google Scholar] [CrossRef] [Green Version]
- Song, J.R.; Peng, W.; Wang, F. An Entropy-Based Method for Identifying Mutual Exclusive Driver Genes in Cancer. IEEE-Acm Trans. Comput. Biol. Bioinform. 2020, 17, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.Y.; et al. The Genomic and Transcriptomic Architecture of 2000 Breast Tumours Reveals Novel Subgroups. Nature 2012, 486, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.S.; Mullins, M.; Cheang, M.C.U.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.P.; Hu, Z.Y.; et al. Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [Google Scholar] [CrossRef]
- Sorlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene Expression Patterns of Breast Carcinomas Distinguish Tumor Subclasses with Clinical Implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedard, P.L.; Hansen, A.R.; Ratain, M.J.; Siu, L.L. Tumour Heterogeneity in the Clinic. Nature 2013, 501, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiser, L.M.; Sadanandam, A.; Kuo, W.L.; Benz, S.C.; Goldstein, T.C.; Ng, S.; Gibb, W.J.; Wang, N.J.; Ziyad, S.; Tong, F.; et al. Subtype and Pathway Specific Responses to Anticancer Compounds in Breast Cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 2724–2729. [Google Scholar] [CrossRef] [Green Version]
- Prat, A.; Parker, J.S.; Karginova, O.; Fan, C.; Livasy, C.; Herschkowitz, J.I.; He, X.P.; Perou, C.M. Phenotypic and Molecular Characterization of the Claudin-Low Intrinsic Subtype of Breast Cancer. Breast Cancer Res. 2010, 12, 18. [Google Scholar] [CrossRef] [Green Version]
- Jahid, M.J.; Huang, T.H.; Ruan, J.H. A Personalized Committee Classification Approach to Improving Prediction of Breast Cancer Metastasis. Bioinformatics 2014, 30, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.F.; Li, T.; Bai, Z.H.; Yang, Y.K.; Liu, X.X.; Zhan, J.L.; Shi, B.Z. Breast Cancer Intrinsic Subtype Classification, Clinical Use and Future Trends. Am. J. Cancer Res. 2015, 5, 2929–2943. [Google Scholar] [PubMed]
- Berger, M.F.; Mardis, E.R. The Emerging Clinical Relevance of Genomics in Cancer Medicine. Nat. Rev. Clin. Oncol. 2018, 15, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Tang, Q.; Dai, W.; Chen, T. Improving Cancer Driver Gene Identification Using Multi-Task Learning on Graph Convolutional Network. Brief. Bioinform. 2021. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M.; Cancer Genome Atlas Research Network. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Int Canc Genome, C. International Network of Cancer Genome Projects. Nature 2010, 464, 993. [Google Scholar]
- Schlomm, T. Results of the CGC/TCGA Pan-Cancer Analysis of the Whole Genomes (PCAWG) Consortium. Urologe 2020, 59, 1552–1553. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, R.; Li, D.D.; Wang, Z. Subtype-GAN: A Deep Learning Approach for Integrative Cancer Subtyping of Multi-Omics Data. Bioinformatics 2021, 37, 2231–2237. [Google Scholar] [CrossRef]
- Franco, E.F.; Rana, P.; Cruz, A.; Calderon, V.V.; Azevedo, V.; Ramos, R.T.J.; Ghosh, P. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data. Cancers 2021, 13, 2013. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Q.; Zhang, W.; Cao, H.S.; Li, G.Y.; Du, W. Classifying Breast Cancer Subtypes Using Deep Neural Networks Based on Multi-Omics Data. Genes 2020, 11, 888. [Google Scholar] [CrossRef]
- Ali, A.M.; Zhuang, H.Q.; Ibrahim, A.; Rehman, O.; Huang, M.; Wu, A. A Machine Learning Approach for the Classification of Kidney Cancer Subtypes Using miRNA Genome Data. Appl. Sci. 2018, 8, 14. [Google Scholar]
- Shen, R.L.; Olshen, A.B.; Ladanyi, M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 2009, 25, 2906–2912. [Google Scholar] [CrossRef] [PubMed]
- Witten, D.M.; Tibshirani, R. A Framework for Feature Selection in Clustering. J. Am. Stat. Assoc. 2010, 105, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Kormaksson, M.; Booth, J.G.; Figueroa, M.E.; Melnick, A. Integrative Model-Based Clustering Of Microarray Methylation and Expression Data. Ann. Appl. Stat. 2012, 6, 1327–1347. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Du, J.L.; Dai, W.; Lan, W. Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding. Front. Cell Dev. Biol. 2021, 8, 1445. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.R.; Beyan, O.; Zappa, A.; Costa, I.G.; Rebholz-Schuhmann, D.; Cochez, M.; Decker, S. Deep Learning-Based Clustering Approaches for Bioinformatics. Brief. Bioinform. 2021, 22, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Chi, W.H.; Li, X.R.; Li, P.; Liang, W.H.; Liu, H.P.; Wang, W.; He, J.X. Evolving the Pulmonary Nodules Diagnosis from Classical Approaches to Deep Learning-Aided Decision Support: Three Decades‘ Development Course and Future Prospect. J. Cancer Res. Clin. Oncol. 2020, 146, 153–185. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.L.; Wu, B.T.; Tang, W.; Zhou, L.N.; Huang, Y.; Zhao, S.J.; Liu, L.; Li, M.; Zhang, L.; Feng, S.C.; et al. Long-Term Follow-up of Persistent Pulmonary Pure Ground-Glass Nodules with Deep Learning-Assisted Nodule Segmentation. Eur. Radiol. 2020, 30, 744–755. [Google Scholar] [CrossRef]
- Munir, K.; Frezza, F.; Rizzi, A. Brain Tumor Segmentation Using 2D-UNET Convolutional Neural Network. In Deep Learning for Cancer Diagnosis; Springer: Singapore, 2020; pp. 239–248. [Google Scholar]
- Xu, J.; Wu, P.; Chen, Y.H.; Meng, Q.F.; Dawood, H.; Dawood, H. A Hierarchical Integration Deep Flexible Neural Forest Framework for Cancer Subtype Classification by Integrating Multi-Omics Data. BMC Bioinform. 2019, 20, 11. [Google Scholar] [CrossRef]
- Park, K.H.; Batbaatar, E.; Piao, Y.; Theera-Umpon, N.; Ryu, K.H. Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification. Int. J. Environ. Res. Public Health 2021, 18, 2197. [Google Scholar] [CrossRef]
- Moreno Lopez, M. Deep Learning for Brain Tumor Segmentation. Master’s Thesis, University of Colorado Colorado Springs (UCCS), Colorado Springs, CO, USA, 2017. [Google Scholar]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef] [Green Version]
- Min, E.X.; Guo, X.F.; Liu, Q.; Zhang, G.; Cui, J.J.; Long, J. A Survey of Clustering With Deep Learning: From the Perspective of Network Architecture. IEEE Access 2018, 6, 39501–39514. [Google Scholar] [CrossRef]
- Fakoor, R.; Ladhak, F.; Nazi, A.; Huber, M. Using Deep Learning to Enhance Cancer Diagnosis and Classification. In Proceedings of the the 30th International Conference on Machine Learning (ICML 2013), WHEALTH Workshop, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Chen, R.P.; Yang, L.; Goodison, S.; Sun, Y.J. Deep-Learning Approach to Identifying Cancer Subtypes Using High-Dimensional Genomic Data. Bioinformatics 2020, 36, 1476–1483. [Google Scholar] [CrossRef]
- Peng, W.; Chen, T.; Dai, W. Predicting Drug Response Based on Multi-omics Fusion and Graph Convolution. IEEE J. Biomed. Health Inform. 2021. [Google Scholar] [CrossRef]
- Lee, S.; Lim, S.; Lee, T.; Sung, I.; Kim, S. Cancer Subtype Classification and Modeling by Pathway Attention and Propagation. Bioinformatics 2020, 36, 3818–3824. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.W.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity Network Fusion for Aggregating Data Types on a Genomic Scale. Nat. Methods 2014, 11, 333-U319. [Google Scholar] [CrossRef] [PubMed]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor Package for Integrative Analysis of TCGA Data. Nucleic Acids Res. 2016, 44, 11. [Google Scholar] [CrossRef] [PubMed]
- Williams, S. Pearson’s Correlation Coefficient. N. Z. Med. J. 1996, 109, 38. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. IEEE. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhou, Z.H.; Feng, J. Deep Forest: Towards an Alternative to Deep Neural Networks. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, 19–25 August 2017; pp. 3553–3559. [Google Scholar]
- Dai, W.; Chang, Q.; Peng, W.; Zhong, J.C.; Li, Y.J. Network Embedding the Protein-Protein Interaction Network for Human Essential Genes Identification. Genes 2020, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.C.; Wang, L.G.; Han, Y.Y.; He, Q.Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Song, J.; Peng, W.; Wang, F. Identifying Cancer Patient Subgroups by Finding Co-Modules From the Driver Mutation Profiles and Downstream Gene Expression Profiles. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021. [Google Scholar] [CrossRef]
Methods | Precision | Recall | F1 Score | Accuracy | ARI | MCC |
---|---|---|---|---|---|---|
SAE+SVM | 0.46688 | 0.47171 | 0.41178 | 0.568 | 0.23869 | 0.36318 |
SAE+Gcforest | 0.47257 | 0.47837 | 0.43852 | 0.64067 | 0.30144 | 0.43627 |
Deeptype | 0.60228 | 0.62621 | 0.59160 | 0.753 | 0.57466 | 0.64430 |
VAE+SVM | 0.66438 | 0.65065 | 0.63436 | 0.74114 | 0.48724 | 0.60771 |
VAE+Gcforest | 0.64519 | 0.64151 | 0.61159 | 0.77448 | 0.54275 | 0.65777 |
SVM | 0.42288 | 0.51925 | 0.45485 | 0.72076 | 0.43940 | 0.57969 |
Gcforest | 0.64539 | 0.65442 | 0.62575 | 0.79638 | 0.57676 | 0.69289 |
Random Forest | 0.66267 | 0.66451 | 0.63839 | 0.78952 | 0.57012 | 0.68508 |
GCN+PPI | 0.64554 | 0.62277 | 0.61171 | 0.75005 | 0.49454 | 0.62303 |
ERGCN | 0.78953 | 0.79844 | 0.77055 | 0.82576 | 0.62873 | 0.74322 |
Methods | Precision | Recall | F1 Score | Accuracy | ARI | MCC |
---|---|---|---|---|---|---|
SAE+SVM | 0.79338 | 0.79440 | 0.78250 | 0.79355 | 0.52781 | 0.72323 |
SAE+Gcforest | 0.79924 | 0.78409 | 0.77825 | 0.78831 | 0.51550 | 0.71606 |
Deeptype | 0.78081 | 0.75975 | 0.74804 | 0.77300 | 0.50885 | 0.79063 |
VAE+SVM | 0.80097 | 0.78549 | 0.78055 | 0.79761 | 0.52952 | 0.72786 |
VAE+Gcforest | 0.77588 | 0.76140 | 0.75264 | 0.77575 | 0.51302 | 0.70079 |
SVM | 0.83716 | 0.81796 | 0.81292 | 0.82083 | 0.56993 | 0.76267 |
Gcforest | 0.85667 | 0.82310 | 0.82187 | 0.83661 | 0.61136 | 0.78249 |
Random Forest | 0.85179 | 0.81486 | 0.81643 | 0.83511 | 0.61546 | 0.78059 |
GCN+PPI | 0.81717 | 0.79781 | 0.79759 | 0.80755 | 0.55226 | 0.74441 |
ERGCN | 0.85109 | 0.84795 | 0.84065 | 0.85131 | 0.64321 | 0.80066 |
Methods | Precision | Recall | F1 Score | Accuracy | ARI | MCC |
---|---|---|---|---|---|---|
SAE+SVM | 0.62703 | 0.64589 | 0.60029 | 0.70706 | 0.40495 | 0.59873 |
SAE+Gcforest | 0.50461 | 0.53870 | 0.48131 | 0.63412 | 0.30443 | 0.49150 |
Deeptype | 0.65217 | 0.66711 | 0.62727 | 0.736 | 0.53235 | 0.64140 |
VAE+SVM | 0.71101 | 0.68801 | 0.67435 | 0.75177 | 0.48261 | 0.65223 |
VAE+Gcforest | 0.70152 | 0.67114 | 0.64492 | 0.74588 | 0.49020 | 0.65056 |
SVM | 0.46486 | 0.53482 | 0.46342 | 0.67176 | 0.44398 | 0.55509 |
Gcforest | 0.68092 | 0.68020 | 0.64116 | 0.76823 | 0.58791 | 0.69718 |
Random Forest | 0.66950 | 0.68130 | 0.63430 | 0.76235 | 0.56768 | 0.68308 |
GCN+PPI | 0.59129 | 0.568 | 0.55040 | 0.65412 | 0.30853 | 0.51357 |
ERGCN | 0.75400 | 0.74699 | 0.72242 | 0.79176 | 0.57377 | 0.71602 |
Methods | BRCA | GBM | LUNG | |||
---|---|---|---|---|---|---|
DBI | Silhouette Width | DBI | Silhouette Width | DBI | Silhouette Width | |
SAE+SVM | 2.0001 | −0.0056 | 2.5358 | 0.0402 | 1.9491 | −0.0005 |
SAE+Gcforest | 1.8179 | 0.0335 | 2.4135 | 0.0465 | 2.0028 | 0.0222 |
DeepType | 0.39641 | 0.62221 | 0.75048 | 0.42000 | 0.57735 | 0.48204 |
VAE+SVM | 2.1105 | −0.0132 | 2.9650 | −0.0376 | 1.8451 | −0.0270 |
VAE+Gcforest | 1.9178 | 0.0444 | 2.8630 | −0.0455 | 1.7715 | −0.0147 |
SVM | 2.15145 | 0.11750 | 2.77210 | −0.00830 | 2.66726 | 0.00047 |
Gcforest | 1.96480 | 0.06851 | 2.80126 | 0.00025 | 2.30813 | −0.00803 |
Random Forest | 1.98764 | 0.05645 | 2.81110 | -0.00069 | 2.28595 | −0.00269 |
GCN+PPI | 2.02747 | 0.03644 | 2.91481 | 0.00961 | 2.25382 | −0.0148 |
ERGCN | 0.29402 | 0.79463 | 0.34806 | 0.76318 | 0.33086 | 0.72691 |
BRCA | GBM | LUNG | |||||||
---|---|---|---|---|---|---|---|---|---|
MLP | GCN | ERGCN | MLP | GCN | ERGCN | MLP | GCN | ERGCN | |
Precision | 0.74126 | 0.76061 | 0.78953 | 0.84129 | 0.84435 | 0.85109 | 0.76058 | 0.74748 | 0.754 |
Recall | 0.75557 | 0.7641 | 0.79844 | 0.84113 | 0.84397 | 0.84795 | 0.74867 | 0.73711 | 0.74699 |
F1 Score | 0.72517 | 0.73677 | 0.77055 | 0.83316 | 0.83556 | 0.84065 | 0.72696 | 0.71772 | 0.72242 |
Accuracy | 0.80095 | 0.80904 | 0.82576 | 0.84285 | 0.84525 | 0.85131 | 0.78941 | 0.78941 | 0.79176 |
ARI | 0.60001 | 0.60768 | 0.62873 | 0.62204 | 0.6292 | 0.64321 | 0.55106 | 0.56351 | 0.57377 |
MCC | 0.70687 | 0.71806 | 0.74322 | 0.78966 | 0.79278 | 0.80066 | 0.70979 | 0.70839 | 0.71602 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; Yue, W.; Peng, W.; Fu, X.; Liu, L.; Liu, L. Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network. Genes 2022, 13, 65. https://doi.org/10.3390/genes13010065
Dai W, Yue W, Peng W, Fu X, Liu L, Liu L. Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network. Genes. 2022; 13(1):65. https://doi.org/10.3390/genes13010065
Chicago/Turabian StyleDai, Wei, Wenhao Yue, Wei Peng, Xiaodong Fu, Li Liu, and Lijun Liu. 2022. "Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network" Genes 13, no. 1: 65. https://doi.org/10.3390/genes13010065
APA StyleDai, W., Yue, W., Peng, W., Fu, X., Liu, L., & Liu, L. (2022). Identifying Cancer Subtypes Using a Residual Graph Convolution Model on a Sample Similarity Network. Genes, 13(1), 65. https://doi.org/10.3390/genes13010065