Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and DNA Preparation
2.2. Genotyping
2.3. GWAS and Linkage Analysis
2.4. Whole-Genome Sequencing Data
2.5. PCR and Sanger Sequencing
2.6. Tajima’s D and Nucleotide Diversity
2.7. Haplotype Analysis
2.8. Phylogenetic Analysis and Fixation Index (FSTR)
2.9. Multidimensional Scaling
3. Results
3.1. Dominant Inheritance of the Long-Hair Phenotype in Sapsarees
3.2. Mapping the Sapsaree Hair Length Variation-Associated Region to Dog Chromosome 13
3.3. Identification of RSPO2 as a Candidate for the Hair Length Variation of Sapsarees
3.4. Confirmation of the RSPO2-Repeat Insertion as the Underlying Mechanism of Hair Phenotype Variations in Sapsarees using Pedigree Typing
3.5. Selective Sweep of the RSPO2-Associated Regions in Long-Haired Dog Breeds
3.6. Common Origin of the RSPO2 Allele among Diverse Long-Hair Dog Breeds
3.7. Haplotype Diversity of the Region Linked to RSPO2-Repeat in Domestic Dogs
3.8. Genetic Diversity in the RSPO2-Linked Region in Sapsarees
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chase, H.B. Growth of the hair. Physiol. Rev. 1954, 34, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Enshell-Seijffers, D.; Lindon, C.; Kashiwagi, M.; Morgan, B.A. Beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 2010, 18, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Hardy, M.H. The secret life of the hair follicle. Trends Genet. 1992, 8, 55–61. [Google Scholar] [CrossRef]
- Kishimoto, J.; Burgeson, R.E.; Morgan, B.A. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 2000, 14, 1181–1185. [Google Scholar] [CrossRef] [PubMed]
- Harshuk-Shabso, S.; Dressler, H.; Niehrs, C.; Aamar, E.; Enshell-Seijffers, D. Fgf and Wnt signaling interaction in the mesenchymal niche regulates the murine hair cycle clock. Nat. Commun. 2020, 11, 5114. [Google Scholar] [CrossRef]
- Hao, H.X.; Xie, Y.; Zhang, Y.; Charlat, O.; Oster, E.; Avello, M.; Lei, H.; Mickanin, C.; Liu, D.; Ruffner, H.; et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 2012, 485, 195–200. [Google Scholar] [CrossRef]
- Koo, B.K.; Spit, M.; Jordens, I.; Low, T.Y.; Stange, D.E.; van de Wetering, M.; van Es, J.H.; Mohammed, S.; Heck, A.J.; Maurice, M.M.; et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature 2012, 488, 665–669. [Google Scholar] [CrossRef]
- Hébert, J.M.; Rosenquist, T.; Götz, J.; Martin, G.R. FGF5 as a regulator of the hair growth cycle: Evidence from targeted and spontaneous mutations. Cell 1994, 78, 1017–1025. [Google Scholar] [CrossRef]
- Suzuki, S.; Ota, Y.; Ozawa, K.; Imamura, T. Dual-mode regulation of hair growth cycle by two Fgf-5 gene products. J. Investig. Dermatol. 2000, 114, 456–463. [Google Scholar] [CrossRef]
- Housley, D.J.; Venta, P.J. The long and the short of it: Evidence that FGF5 is a major determinant of canine ‘hair’-itability. Anim. Genet. 2006, 37, 309–315. [Google Scholar] [CrossRef]
- Cadieu, E.; Neff, M.W.; Quignon, P.; Walsh, K.; Chase, K.; Parker, H.G.; Vonholdt, B.M.; Rhue, A.; Boyko, A.; Byers, A.; et al. Coat variation in the domestic dog is governed by variants in three genes. Science 2009, 326, 150–153. [Google Scholar] [CrossRef]
- Boyko, A.R.; Quignon, P.; Li, L.; Schoenebeck, J.J.; Degenhardt, J.D.; Lohmueller, K.E.; Zhao, K.; Brisbin, A.; Parker, H.G.; vonHoldt, B.M.; et al. A simple genetic architecture underlies morphological variation in dogs. PLoS Biol. 2010, 8, e1000451. [Google Scholar] [CrossRef]
- Von Holdt, B.M.; Pollinger, J.P.; Lohmueller, K.E.; Han, E.; Parker, H.G.; Quignon, P.; Degenhardt, J.D.; Boyko, A.R.; Earl, D.A.; Auton, A.; et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 2010, 464, 898–902. [Google Scholar] [CrossRef]
- Ostrander, E.A.; Wayne, R.K.; Freedman, A.H.; Davis, B.W. Demographic history, selection and functional diversity of the canine genome. Nat. Rev. Genet. 2017, 18, 705–720. [Google Scholar] [CrossRef]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.-H. Dogs in Korea: An Uncomfortable Truth of Korean Dogs, 1st ed.; Global Contents: Seoul, Korea, 2017; Volume 1, pp. 1–219. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Sham, P.C. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11. [Google Scholar] [CrossRef]
- Dinka, H.; Le, M.T.; Ha, H.; Cho, H.; Choi, M.K.; Choi, H.; Kim, J.H.; Soundarajan, N.; Park, J.K.; Park, C. Analysis of the vomeronasal receptor repertoire, expression and allelic diversity in swine. Genomics 2016, 107, 208–215. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M.; et al. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2229. [Google Scholar] [CrossRef]
- Browning, B.L.; Tian, X.; Zhou, Y.; Browning, S.R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021, 108, 1880–1890. [Google Scholar] [CrossRef] [PubMed]
- Salzburger, W.; Ewing, G.B.; Haeseler, A.V. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 2011, 20, 1952–1963. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. PHYLIP (Phylogeny Interference Package), version 3.7a; University of Washington: Seattle, WA, USA, 2009. [Google Scholar]
- Subramanian, S.; Ramasamy, U.; Chen, D. VCF2PopTree: A client-side software to construct population phylogeny from genome-wide SNPs. PeerJ 2019, 7, e8213. [Google Scholar] [CrossRef]
- Kumar, C.; Song, S.; Jiang, L.; He, X.; Zhao, Q.; Pu, Y.; Malhi, K.K.; Kamboh, A.A.; Ma, Y. Sequence Characterization of DSG3 Gene to Know Its Role in High-Altitude Hypoxia Adaptation in the Chinese Cashmere Goat. Front. Genet. 2018, 9, 553. [Google Scholar] [CrossRef]
- Di Gaetano, C.; Fiorito, G.; Ortu, M.F.; Rosa, F.; Guarrera, S.; Pardini, B.; Cusi, D.; Frau, F.; Barlassina, C.; Troffa, C.; et al. Sardinians genetic background explained by runs of homozygosity and genomic regions under positive selection. PLoS ONE 2014, 9, e91237. [Google Scholar] [CrossRef]
- Reich, D.; Thangaraj, K.; Patterson, N.; Price, A.L.; Singh, L. Reconstructing Indian population history. Nature 2009, 461, 489–494. [Google Scholar] [CrossRef]
- Han, K.-I.; Alam, M.; Lee, Y.-M.; Lee, D.-H.; Ha, J.-H.; Kim, J.-J. A Study on Morphology and Behavior of the Sapsaree: A Korean native dog (Canis familiaris). J. Anim. Sci. Technol. 2010, 52, 481–490. [Google Scholar] [CrossRef][Green Version]
- Hayward, J.J.; Castelhano, M.G.; Oliveira, K.C.; Corey, E.; Balkman, C.; Baxter, T.L.; Casal, M.L.; Center, S.A.; Fang, M.; Garrison, S.J.; et al. Complex disease and phenotype mapping in the domestic dog. Nat. Commun 2016, 7, 10460. [Google Scholar] [CrossRef] [PubMed]
- Schoenebeck, J.J.; Ostrander, E.A. Insights into morphology and disease from the dog genome project. Annu. Rev. Cell. Dev. Biol. 2014, 30, 535–560. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.G.; Chase, K.; Cadieu, E.; Lark, K.G.; Ostrander, E.A. An Insertion in the RSPO2 Gene Correlates with Improper Coat in the Portuguese Water Dog. J. Hered. 2010, 101, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Gajaweera, C.; Kang, J.M.; Lee, D.H.; Lee, S.H.; Kim, Y.K.; Wijayananda, H.I.; Kim, J.J.; Ha, J.H.; Choi, B.H.; Lee, S.H. Genetic diversity and population structure of the Sapsaree, a native Korean dog breed. BMC Genet. 2019, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, B.-H.; Eo, J.; Kwon, Y.-J.; Lee, H.-E.; Choi, Y.; Gim, J.-A.; Kim, T.-H.; Seong, H.-H.; Lee, D.-H.; et al. Statistical analysis and genetic diversity of three dog breeds using simple sequence repeats. Genes Genom. 2014, 36, 883–889. [Google Scholar] [CrossRef]
- Kang, M.; Ahn, B.; Youk, S.; Cho, H.-s.; Choi, M.; Hong, K.; Do, J.T.; Song, H.; Jiang, H.; Kennedy, L.J.; et al. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J. Mamm. Evol. 2021, 28, 773–784. [Google Scholar] [CrossRef]
- Dierks, C.; Momke, S.; Philipp, U.; Distl, O. Allelic heterogeneity of FGF5 mutations causes the long-hair phenotype in dogs. Anim. Genet. 2013, 44, 425–431. [Google Scholar] [CrossRef]
- Shannon, L.M.; Boyko, R.H.; Castelhano, M.; Corey, E.; Hayward, J.J.; McLean, C.; White, M.E.; Said, M.A.; Anita, B.A.; Bondjengo, N.I.; et al. Genetic structure in village dogs reveals a Central Asian domestication origin. Proc. Natl. Acad. Sci. USA 2015, 112, 13639–13644. [Google Scholar] [CrossRef]
- Bergstrom, A.; Frantz, L.; Schmidt, R.; Ersmark, E.; Lebrasseur, O.; Girdland-Flink, L.; Lin, A.T.; Stora, J.; Sjogren, K.G.; Anthony, D.; et al. Origins and genetic legacy of prehistoric dogs. Science 2020, 370, 557–564. [Google Scholar] [CrossRef]
- Skoglund, P.; Ersmark, E.; Palkopoulou, E.; Dalen, L. Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr. Biol. 2015, 25, 1515–1519. [Google Scholar] [CrossRef]
- Wang, G.D.; Zhai, W.; Yang, H.C.; Wang, L.; Zhong, L.; Liu, Y.H.; Fan, R.X.; Yin, T.T.; Zhu, C.L.; Poyarkov, A.D.; et al. Out of southern East Asia: The natural history of domestic dogs across the world. Cell Res. 2016, 26, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Frantz, L.A.; Mullin, V.E.; Pionnier-Capitan, M.; Lebrasseur, O.; Ollivier, M.; Perri, A.; Linderholm, A.; Mattiangeli, V.; Teasdale, M.D.; Dimopoulos, E.A.; et al. Genomic and archaeological evidence suggest a dual origin of domestic dogs. Science 2016, 352, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.N.; Hankenson, K.D. R-spondins: Novel matricellular regulators of the skeleton. Matrix Biol. 2014, 37, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.N. R-Spondin-2 Modulates Osteoblastogenesis and Bone Accrual Through WNT Signaling. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2017. [Google Scholar]
- Becker, D.; Weikard, R.; Schulze, C.; Wohlsein, P.; Kuhn, C. A 50-kb deletion disrupting the RSPO2 gene is associated with tetradysmelia in Holstein Friesian cattle. Genet. Sel. Evol. 2020, 52, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Vaysse, A.; Ratnakumar, A.; Derrien, T.; Axelsson, E.; Pielberg, G.R.; Sigurdsson, S.; Fall, T.; Seppala, E.H.; Hansen, M.S.; Lawley, C.T.; et al. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 2011, 7, e1002316. [Google Scholar] [CrossRef] [PubMed]
Breed | Origin | Hair length | Furnishing | FGF5 | RSPO2 |
---|---|---|---|---|---|
DongGyeongi | Northeast Asia | Short | No | − | − |
Jindo | Northeast Asia | Short | No | − | − |
Pekingese | Northeast Asia | Long | No | + | − |
Pug | Northeast Asia | Short | No | − | − |
Sapsaree-long | Northeast Asia | Long | Yes | + | + |
Sapsaree-short | Northeast Asia | Short | No | + | - |
Shiba Inu | Northeast Asia | Short | No | − | − |
Shih Tzu | Northeast Asia | Long | Yes | + | + |
Tibetan Mastiff | Northeast Asia | Medium | No | + | − |
Tibetan Terrier | Northeast Asia | Long | Yes | + | + |
Petit Basset Griffon Vendeen* | Europe | Short | Yes | − | + |
Irish Wolfhound* | Europe | Short | Yes | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, M.; Ahn, B.; Youk, S.; Lee, Y.-M.; Kim, J.-J.; Ha, J.-H.; Park, C. Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog. Genes 2022, 13, 102. https://doi.org/10.3390/genes13010102
Kang M, Ahn B, Youk S, Lee Y-M, Kim J-J, Ha J-H, Park C. Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog. Genes. 2022; 13(1):102. https://doi.org/10.3390/genes13010102
Chicago/Turabian StyleKang, Mingue, Byeongyong Ahn, Seungyeon Youk, Yun-Mi Lee, Jong-Joo Kim, Ji-Hong Ha, and Chankyu Park. 2022. "Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog" Genes 13, no. 1: 102. https://doi.org/10.3390/genes13010102
APA StyleKang, M., Ahn, B., Youk, S., Lee, Y.-M., Kim, J.-J., Ha, J.-H., & Park, C. (2022). Tracing the Origin of the RSPO2 Long-Hair Allele and Epistatic Interaction between FGF5 and RSPO2 in Sapsaree Dog. Genes, 13(1), 102. https://doi.org/10.3390/genes13010102