Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB
Abstract
:1. Introduction
2. Methods
2.1. Transcriptome Data
2.2. Indices of Codon Usage
2.3. Neutrality Plot
2.4. ENC Plot
2.5. PR2 Bias Plot Analysis
2.6. Determination of Optimal Codons
2.7. Correspondence Analysis (COA)
2.8. Statistical Analysis
3. Results
3.1. Nucleotide Contents of G. duodenalis Genes
3.2. Codon Usage in G. duodenalis
3.3. Relation between ENC and GC3
3.4. Correspondence Analysis
3.5. PR2-Bias Plot Analysis
3.6. Role of Gene Expression Level and Encoded Protein Size Synonymous CUB
3.7. Optimal Codons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC1 | GC-content at the first codon positions |
GC2 | GC-content at the second codon positions |
GC12 | The average of GC1 and GC2 |
GC3 | GC-content at the third codon positions |
GC3s | Frequency of either a G or C at the third codon position of synonymous codons |
References
- Akashi, H.; Eyrewalker, A. Translational selection and molecular evolution. Curr. Opin. Genet. Dev. 1998, 8, 688–693. [Google Scholar] [CrossRef]
- Akashi, H. Gene expression and molecular evolution. Curr. Opin. Genet. Dev. 2001, 11, 660–666. [Google Scholar] [CrossRef]
- Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 2002, 12, 640–649. [Google Scholar] [CrossRef]
- Ikemura, T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. J. Mol. Biol. 1981, 146, 1–21. [Google Scholar] [CrossRef]
- Osawa, S.; Ohama, T.; Yamao, F.; Muto, A.; Jukes, T.H.; Ozeki, H.; Umesono, K. Directional Mutation Pressure and Transfer RNA in Choice of the Third Nucleotide of Synonymous Two-Codon Sets. Proc. Natl. Acad. Sci. USA 1988, 85, 1124–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, P.M.; Li, W.H. Codon usage in regulatory genes in Escherichia coli does not reflect selection. Nucleic Acids Res. 1986, 14, 7737–7749. [Google Scholar] [CrossRef] [Green Version]
- Chiapello, H.; Al, E. Codon usage and gene function are related in sequences of Arabidopsis thaliana. Gene 1998, 209, GC1–GC38. [Google Scholar] [CrossRef]
- Moriyama, E.N.; Powell, J.R. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res. 1998, 26, 3188–3193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oresic, M.; Shalloway, D. Specific correlations between relative synonymous codon usage and protein secondary structure. J. Mol. Biol. 1998, 281, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Romero, H.; Zavala, A.; Musto, H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 2000, 28, 2084–2090. [Google Scholar] [CrossRef] [Green Version]
- Sau, K.; Deb, A. Temperature influences synonymous codon and amino acid usage biases in the phages infecting extremely thermophilic prokaryotes. Silico Biol. 2009, 9, 1–9. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 1986, 24, 28–38. [Google Scholar] [CrossRef]
- Angellotti, M.C.; Bhuiyan, S.B.; Chen, G.; Wan, X.F. CodonO: Codon usage bias analysis within and across genomes. Nucleic Acids Res. 2007, 35, 132–136. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, W.M.; Wang, H.; Zhou, Y.B.; Luan, Y.; Qi, M.; Cheng, Y.Z.; Tang, W.; Liu, J.; Yu, H. Codon usage bias in Chlamydia trachomatis and the effect of codon modification in the MOMP gene on immune responses to vaccination. Biochem. Cell Biol.-Biochim. Biol. Cell 2007, 85, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 1995, 6, 494–500. [Google Scholar] [CrossRef]
- Ahn, I.; Jeong, B.J.; Bae, S.E.; Jin, J.; Son, H.S. Genomic Analysis of Influenza A Viruses, including Avian Flu (H5N1) Strains. Eur. J. Epidemiol. 2006, 21, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Naya, H.; Romero, H.; Carels, N.; Zavala, A.; Musto, H. Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS. Lett. 2001, 501, 127–130. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; Bhattacharyya, T.K.; Ghosh, T.C. Synonymous Codon Usage in Lactococcus lactis: Mutational Bias Versus Translational Selection. J. Biomol. Struct. Dyn. 2004, 21, 527–535. [Google Scholar] [CrossRef]
- Lin, K.; Kuang, Y.; Joseph, J.S.; Kolatkar, P.R. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: Lessons from supervised machine learning in functional genomics. Nucleic Acids Res. 2002, 30, 2599–2607. [Google Scholar] [CrossRef]
- Yang, X.; Luo, X.; Cai, X. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset. Parasites Vectors 2014, 7, 527. [Google Scholar] [CrossRef]
- Huang, X.; Xu, J.; Chen, L.; Wang, Y.; Gu, X.; Peng, X.; Yang, G. Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps. BMC Genom. 2017, 18, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, L.; Fernández, V.; Musto, H. The effect of expression levels on codon usage in Plasmodium falciparum. Parasitology 2004, 128, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.C.; Gupta, S.K.; Majumdar, S. Studies on codon usage in Entamoeba histolytica. Int. J. Parasitol. 2000, 30, 715–722. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, R.; Iii, R.R.B.; Liu, T.; Li, Z.; Pombert, J.F.; Zhou, Z. Comparative Analysis of Codon Usage Bias Patterns in Microsporidian Genomes. PLoS ONE 2015, 10, e0129223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duret, L.; Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc. Natl. Acad. Sci. USA 1999, 96, 4482–4487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, F.; Bibb, M.J. Codon usage in the G+C-rich Streptomyces genome. Gene 1992, 113, 55–65. [Google Scholar] [CrossRef]
- Mcinerney, J.O. Replicational and Transcriptional Selection on Codon Usage in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 1998, 95, 10698–10703. [Google Scholar] [CrossRef] [Green Version]
- Sharp, P.M.; Cowe, E. Synonymous codon usage in Saccharomyces cerevisiae. Yeast 1991, 7, 657–678. [Google Scholar] [CrossRef]
- Kliman, R.M.; Irving, N.; Santiago, M. Selection conflicts, gene expression, and codon usage trends in yeast. J. Mol. Evol. 2003, 57, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Savioli, L.; Smith, H.; Thompson, A. Giardia and Cryptosporidium join the ‘Neglected Diseases Initiative. Trends Parasitol. 2006, 22, 203–208. [Google Scholar] [CrossRef]
- Geurden, T.; Vercruysse, J.; Claerebout, E. Is Giardia a significant pathogen in production animals? Exp. Parasitol. 2010, 124, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.D. Biology of Giardia lamblia. Clin. Microbiol. Rev. 2001, 14, 447–475. [Google Scholar] [CrossRef] [Green Version]
- Char, S.; Farthing, M.J. Codon usage in Giardia lamblia. J. Protozool. 1992, 39, 642–644. [Google Scholar] [CrossRef] [PubMed]
- Lafay, B.; Sharp, P.M. Synonymous codon usage variation among Giardia lamblia genes and isolates. Mol. Biol. Evol. 1999, 16, 1484–1495. [Google Scholar] [CrossRef] [Green Version]
- Franzén, O.; Jerlström-Hultqvist, J.; Einarsson, E.; Ankarklev, J.; Ferella, M.; Andersson, B.; Svärd, S.G. Transcriptome profiling of Giardia intestinalis using strand-specific RNA-seq. PLoS Comput. Biol. 2013, 9, e1003000. [Google Scholar] [CrossRef] [Green Version]
- Pere, P.; Guzmán, E.; Romeu, A.; Garcia-Vallvé, S. OPTIMIZER: A web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 2007, 35, W126–W131. [Google Scholar]
- Müller, J.; Braga, S.; Uldry, A.C.; Heller, M.; Müller, N. Comparative proteomics of three Giardia lamblia strains: Investigation of antigenic variation in the post-genomic era. Parasitology 2020, 147, 1008–1018. [Google Scholar] [CrossRef]
- Wright, F. The ‘effective number of codons’ used in a gene. Gene 1990, 87, 23–29. [Google Scholar] [CrossRef]
- Sharp, P.M.; Li, W.H. The codon Adaptation Index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [Green Version]
- Sueoka, N. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 1988, 85, 2653–2657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartl, D.L.; Moriyama, E.N.; Sawyer, S.A. Selection intensity for codon bias. Genetics 1994, 138, 227–234. [Google Scholar] [CrossRef]
- Sueoka, N. Near Homogeneity of PR2-Bias Fingerprints in the Human Genome and Their Implications in Phylogenetic Analyses. J. Mol. Evol. 2001, 53, 469–476. [Google Scholar] [CrossRef]
- Liu, Q. Analysis of codon usage pattern in the radioresistant bacterium Deinococcus radiodurans. Biosystems 2006, 85, 99–106. [Google Scholar] [CrossRef]
- Greenacre, M.J. Theory and applications of correspondence analysis. J. Am. Stat. Assoc. 1984, 80, 1067. [Google Scholar]
- Nakamura, Y.; Gojobori, T.T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res. 1998, 26, 334. [Google Scholar] [CrossRef] [Green Version]
- Bulmer, M. Are codon usage patterns in unicellular organisms determined by selection-mutation balance? J. Evol. Biol. 1988, 1, 15–26. [Google Scholar] [CrossRef]
- Comeron, J.M.; Kreitman, M.; Aguadé, M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 1999, 151, 239–249. [Google Scholar] [CrossRef]
- Marais, G.; Mouchiroud, D.; Duret, L. Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc. Natl. Acad. Sci. USA. 2001, 98, 5688–5692. [Google Scholar] [CrossRef] [Green Version]
- Hey, J.; Kliman, R.M. Interactions between natural selection, recombination and gene density in the genes of Drosophila. Genetics 2002, 160, 595–608. [Google Scholar] [CrossRef]
- Stenico, M.; Lloyd, A.T.; Sharp, P.M. Codon usage in Caenorhabditis elegans: Delineation of translational selection and mutational biases. Nucleic Acids Res. 1994, 22, 2437–2446. [Google Scholar] [CrossRef] [Green Version]
- Kliman, R.M.; Hey, J. Hill-Robertson interference in Drosophila melanogaster: Reply to Marais, Mouchiroud and Duret. Genet. Res. 2003, 81, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Marais, G. Hill-Robertson Interference is a Minor Determinant of Variations in Codon Bias Across Drosophila melanogaster and Caenorhabditis elegans Genomes. Mol. Biol. Evol. 2002, 19, 1399–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Carlini, D.B.; Baines, J.F.; Parsch, J.; Braverman, J.M.; Tanda, S.; Stephan, W. RNA secondary structure and compensatory evolution. Genes Genet. Syst. 1999, 74, 271–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlini, D.B.; Chen, Y.; Stephan, W. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics 2001, 159, 623–633. [Google Scholar] [CrossRef]
- Orešič, M.; Dehn, M.H.H.; Korenblum, D.H.H.; Shalloway, D.H.H. Tracing Specific Synonymous Codon–Secondary Structure Correlations Through Evolution. J. Mol. Evol. 2003, 56, 473–484. [Google Scholar] [CrossRef]
- Vinogradov, A.E. Intron length and codon usage. J. Mol. Evol. 2001, 52, 310. [Google Scholar] [CrossRef] [Green Version]
- Prat, Y.; Fromer, M.; Linial, N.; Linial, M. Codon usage is associated with the evolutionary age of genes in metazoan genomes. Bmc Evol. Biol. 2009, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Berg, O.G. Selection intensity for codon bias and the effective population size of Escherichia coli. Genetics 1996, 142, 1379–1382. [Google Scholar] [CrossRef]
- Rispe, C.; Delmotte, F.; van Ham, R.C.; Moya, A. Mutational and selective pressures on codon and amino acid usage in Buchnera, endosymbiotic bacteria of aphids. Genome Res. 2004, 14, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Shang, M.Z.; Liu, F.; Hua, J.P.; Wang, K.B. Analysis on Codon Usage of Chloroplast Genome of Gossypium hirsutum. Scientia Agricultura Sinica 2011, 44, 245–253. [Google Scholar]
- Kawabe, A.; Miyashita, N.T. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet. Syst. 2003, 78, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Hershberg, R.; Petrov, D. A: General Rules for Optimal Codon Choice. PLoS Genet. 2009, 5, e1000556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saul, A.; Battistutta, D. Codon usage in Plasmodium falciparum. Mol. Biochem. Parasitol. 1988, 27, 35–42. [Google Scholar] [CrossRef]
- Milhon, J.L.; Tracy, J.W. Updated Codon Usage in Schistosoma. Exp. Parasitol. 1995, 80, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Muto, A.; Yamao, F.; Osawa, S. The genome of Mycoplasma capricolum. Prog. Nucleic Acid Res. Mol. Biol. 1987, 34, 29–58. [Google Scholar]
- Quax, T.E.F.; Claassens, N.J.; Söll, D.; Oost, J.V.D. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 2015, 59, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Fuglsang, A. The ‘effective number of codons’ revisited. Biochem. Biophys. Res. Commun. 2004, 317, 957–964. [Google Scholar] [CrossRef]
- Supek, F. The Code of Silence: Widespread Associations Between Synonymous Codon Biases and Gene Function. J. Mol. Evol. 2016, 82, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, A.; Zinovyev, A.; Képès, F. Codon adaptation index as a measure of dominating codon bias. Bioinformatics 2003, 19, 2005–2015. [Google Scholar] [CrossRef] [Green Version]
- Gajbhiye, S.; Patra, P.K.; Yadav, M.K. New insights into the factors affecting synonymous codon usage in human infecting Plasmodium species. Acta Trop. 2017, 176, 29–33. [Google Scholar] [CrossRef]
- Qiu, S.; Bergero, R.; Zeng, K.; Charlesworth, D. Patterns of Codon Usage Bias in Silene latifolia. Mol. Biol. Evol. 2011, 28, 771–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, E.N.; Powell, J.R. Codon Usage Bias and tRNA Abundance in Drosophila. J. Mol. Evol. 1997, 45, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.J.; Ko, S.Y.; Kim, Y.J.; Lee, E.G.; Cho, S.N.; Kang, C.Y. Optimization of codon usage enhances the immunogenicity of a DNA vaccine encoding mycobacterial antigen Ag85B. Infect. Immun. 2005, 73, 5666–5674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, R.; Yao, Q.; Xiong, A.; Cheng, Z.; Li, Y. Codon-modifications and an endoplasmic reticulum-targeting sequence additively enhance expression of an Aspergillus phytase gene in transgenic canola. Plant Cell Rep. 2006, 25, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Rouwendal, G.J.A.; Mendes, O.; Wolbert, E.J.H.; Boer, A.D.D. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol. Biol. 1997, 33, 989–999. [Google Scholar] [CrossRef]
- Rao, Y.; Wu, G.; Wang, Z.; Chai, X.; Nie, Q.; Zhang, X. Mutation Bias is the Driving Force of Codon Usage in the Gallus gallusgenome. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2011, 18, 499–512. [Google Scholar]
AA | Codon | N | RSCU | AA | Codon | N | RSCU |
---|---|---|---|---|---|---|---|
Phe | UUU | 59,550 | 1.07 | Ser | UCU | 73,318 | 1.49 |
UUC | 52,173 | 0.93 | UCC | 48,316 | 0.98 | ||
Leu | UUA | 31,152 | 0.55 | UCA | 44,668 | 0.91 | |
UUG | 46,111 | 0.82 | UCG | 32,496 | 0.66 | ||
CUU | 82,286 | 1.47 | Pro | CCU | 41,755 | 1.11 | |
CUC | 68,932 | 1.23 | CCC | 36,359 | 0.97 | ||
CUA | 44,031 | 0.78 | CCA | 43,775 | 1.17 | ||
CUG | 64,305 | 1.15 | CCG | 28,158 | 0.75 | ||
Ile | AUU | 64,266 | 1.06 | Thr | ACU | 51,120 | 1.01 |
AUC | 62,851 | 1.04 | ACC | 48,607 | 0.96 | ||
AUA | 54,849 | 0.90 | ACA | 64,162 | 1.27 | ||
Met | AUG | 71,824 | 1.00 | ACG | 38,778 | 0.77 | |
Val | GUU | 53,711 | 1.12 | Ala | GCU | 66,007 | 1.04 |
GUC | 53,666 | 1.12 | GCC | 64,537 | 1.02 | ||
GUA | 33,623 | 0.70 | GCA | 82,061 | 1.29 | ||
GUG | 50,286 | 1.05 | GCG | 41,021 | 0.65 | ||
Tyr | UAU | 53,440 | 1.01 | Cys | UGU | 32,743 | 0.82 |
UAC | 52,143 | 0.99 | UGC | 46,757 | 1.18 | ||
His | CAU | 35,269 | 0.90 | Arg | CGU | 26,186 | 0.90 |
CAC | 43,263 | 1.10 | CGC | 35,590 | 1.22 | ||
Gln | CAA | 50,096 | 0.79 | CGA | 22,041 | 0.76 | |
CAG | 76,057 | 1.21 | CGG | 24,910 | 0.85 | ||
Asn | AAU | 61,610 | 0.97 | Ser | AGU | 38,408 | 0.78 |
AAC | 66,024 | 1.03 | AGC | 57,389 | 1.17 | ||
Lys | AAA | 50,623 | 0.63 | Arg | AGA | 34,334 | 1.18 |
AAG | 109,717 | 1.37 | AGG | 31,972 | 1.10 | ||
Asp | GAU | 85,457 | 1.00 | Gly | GGU | 32,910 | 0.77 |
GAC | 85,476 | 1.00 | GGC | 49,200 | 1.15 | ||
Glu | GAA | 72,247 | 0.78 | GGA | 47,874 | 1.12 | |
GAG | 112,061 | 1.22 | GGG | 40,586 | 0.95 |
Codon Amino Acid Fraction Frequency Number |
---|
UGC Cys 0.730 88.230 1042 |
AAG Lys 0.760 60.203 711 |
GGC Gly 0.367 40.898 483 |
GAC Asp 0.575 35.309 417 |
AAC Asn 0.679 34.208 404 |
GCC Ala 0.299 32.769 387 |
ACG Thr 0.325 32.769 387 |
UGU Cys 0.270 32.684 386 |
GAG Glu 0.661 30.821 364 |
GGA Gly 0.268 29.890 353 |
ACC Thr 0.284 28.620 338 |
GCG Ala 0.257 28.196 333 |
GGG Gly 0.242 26.926 318 |
GAU Asp 0.425 26.080 308 |
AGC Ser 0.367 26.080 308 |
C | AA | FRA. | FRE. | N | C | AA | FRA. | FRE. | N | C | AA | FRA. | FRE. | N | C | AA | FRA. | FRE. | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UUU | F | 0.44 | 14.6 | 2723 | UCU | S | 0.23 | 17.7 | 3293 | UAU | Y | 0.44 | 14.3 | 2658 | UGU | C | 0.35 | 12.6 | 2349 |
UUC | F | 0.56 | 18.9 | 3516 | UCC | S | 0.19 | 14.1 | 2632 | UAC | Y | 0.56 | 18.5 | 3448 | UGC | C | 0.65 | 23.8 | 4430 |
UUA | L | 0.07 | 5.9 | 1095 | UCA | S | 0.13 | 9.9 | 1849 | UAA | * | 0.53 | 0.7 | 137 | UGA | W | 0.07 | 0.6 | 108 |
UUG | L | 0.11 | 10.0 | 1861 | UCG | S | 0.12 | 9.2 | 1721 | UAG | * | 0.47 | 0.7 | 122 | UGG | W | 0.93 | 7.4 | 1378 |
CUU | L | 0.24 | 21.0 | 3091 | CCU | P | 0.25 | 11.2 | 2077 | CAU | H | 0.36 | 7.6 | 1421 | CGU | R | 0.16 | 7.9 | 1462 |
CUC | L | 0.28 | 24.6 | 4578 | CCC | P | 0.27 | 11.9 | 2215 | CAC | H | 0.64 | 13.4 | 2493 | CGC | R | 0.28 | 13.7 | 2552 |
CUA | L | 0.10 | 9.1 | 1702 | CCA | P | 0.24 | 10.5 | 1963 | CAA | Q | 0.33 | 12.0 | 2228 | CGA | R | 0.10 | 4.8 | 891 |
CUG | L | 0.20 | 17.5 | 3266 | CCG | P | 0.23 | 10.2 | 1898 | CAG | Q | 0.67 | 24.5 | 4551 | CGG | R | 0.10 | 4.8 | 896 |
AUU | I | 0.32 | 17.3 | 3217 | ACU | T | 0.23 | 14.9 | 2776 | AAU | N | 0.40 | 16.5 | 3074 | AGU | S | 0.12 | 8.9 | 1658 |
AUC | I | 0.44 | 23.7 | 4418 | ACC | T | 0.27 | 18.1 | 3377 | AAC | N | 0.60 | 24.4 | 4548 | AGC | S | 0.22 | 16.4 | 3061 |
AUA | I | 0.25 | 13.5 | 2505 | ACA | T | 0.27 | 17.9 | 3331 | AAA | K | 0.23 | 13.8 | 2574 | AGA | R | 0.16 | 7.7 | 1433 |
AUG | M | 1.00 | 21.3 | 3961 | ACG | T | 0.23 | 15.3 | 2846 | AAG | K | 0.77 | 45.3 | 8433 | AGG | R | 0.19 | 9.4 | 1749 |
GUU | V | 0.26 | 16.2 | 3009 | GCU | A | 0.23 | 19.3 | 3583 | GAU | D | 0.42 | 24.6 | 4575 | GGU | G | 0.17 | 11.6 | 2155 |
GUC | V | 0.36 | 22.7 | 4229 | GCC | A | 0.30 | 25.3 | 4707 | GAC | D | 0.58 | 33.6 | 6253 | GGC | G | 0.34 | 23.1 | 4291 |
GUA | V | 0.13 | 8.0 | 1483 | GCA | A | 0.28 | 23.2 | 4318 | GAA | E | 0.31 | 18.9 | 3516 | GGA | G | 0.25 | 16.8 | 3128 |
GUG | V | 0.25 | 15.6 | 2895 | GCG | A | 0.19 | 15.9 | 2965 | GAG | E | 0.69 | 41.5 | 7719 | GGG | G | 0.23 | 15.7 | 2917 |
AA | Codon | High RSCU (N) | Low RSCU (N) | AA | Codon | High RSCU (N) | Low RSCU (N) |
---|---|---|---|---|---|---|---|
Phe | UUU | 0.36 (632) | 1.24 (1846) | Ser | UCU | 0.88 (972) | 1.58 (3140) |
UUC * | 1.64 (2845) | 0.76 (1132) | UCC * | 1.66 (1833) | 0.75 (1484) | ||
Leu | UUA | 0.07 (94) | 0.99 (1832) | UCA | 0.27 (301) | 1.20 (2392) | |
UUG | 0.27 (377) | 0.96 (1777) | UCG * | 1.13 (1249) | 0.53 (1044) | ||
CUU | 0.96 (1350) | 1.31 (2421) | AGU | 0.32 (353) | 0.98 (1943) | ||
CUC * | 2.96 (4153) | 0.76 (1399) | AGC * | 1.74 (1929) | 0.96 (1915) | ||
CUA | 0.14 (190) | 1.06 (1962) | Pro | CCU | 0.64 (807) | 1.21 (1684) | |
CUG * | 1.61 (2262) | 0.92 (1690) | CCC * | 1.57 (1974) | 0.76 (1063) | ||
Ile | AUU | 0.51 (801) | 1.16 (2187) | CCA | 0.38 (480) | 1.43 (1992) | |
AUC * | 2.16 (3418) | 0.73 (1369) | CCG * | 1.41 (1778) | 0.59 (824) | ||
AUA | 0.33 (529) | 1.11 (2088) | Thr | ACU | 0.50 (729) | 1.21 (2058) | |
Met | AUG | 1.00 (2296) | 1.00 (2331) | ACC * | 1.30 (1914) | 0.77 (1306) | |
Val | GUU | 0.60 (1048) | 1.13 (1611) | ACA | 0.62 (917) | 1.42 (2413) | |
GUC * | 2.27 (3977) | 0.74 (1066) | ACG * | 1.58 (2319) | 0.60 (1013) | ||
GUA | 0.17 (297) | 1.11 (1590) | Ala | GCU | 0.52 (1271) | 1.22 (2344) | |
GUG | 0.96 (1687) | 1.02 (1461) | GCC * | 1.70 (4180) | 0.77 (1487) | ||
Tyr | UAU | 0.40 (638) | 1.21 (1682) | GCA | 0.63 (1551) | 1.47 (2826) | |
UAC * | 1.60 (2521) | 0.79 (1095) | GCG * | 1.15 (2823) | 0.54 (1042) | ||
His | CAU | 0.32 (338) | 1.13 (1582) | Cys | UGU | 0.32 (702) | 1.05 (1125) |
CAC * | 1.68 (1779) | 0.87 (1221) | UGC * | 1.68 (3650) | 0.95 (1015) | ||
Gln | CAA | 0.21 (335) | 1.07 (2489) | Trp | UGG | 1.00 (823) | 1.00 (749) |
CAG * | 1.79 (2878) | 0.93 (2171) | Arg | CGU | 0.57 (547) | 0.87 (1036) | |
Asn | AAU | 0.39 (763) | 1.15 (2189) | CGC * | 2.58 (2471) | 0.75 (890) | |
AAC * | 1.61 (3105) | 0.85 (1618) | CGA | 0.25 (242) | 0.93 (1105) | ||
Lys | AAA | 0.18 (548) | 0.92 (2284) | CGG | 0.91 (868) | 0.89 (1056) | |
AAG * | 1.82 (5508) | 1.08 (2680) | AGA | 0.37 (355) | 1.57 (1859) | ||
Asp | GAU | 0.45 (1310) | 1.23 (3040) | AGG * | 1.32 (1264) | 0.99 (1168) | |
GAC * | 1.55 (4509) | 0.77 (1913) | Gly | GGU | 0.41 (833) | 0.96 (1045) | |
Glu | GAA | 0.23 (721) | 1.00 (2804) | GGC * | 1.87 (3831) | 0.91 (987) | |
GAG * | 1.77 (5474) | 1.00 (2795) | GGA | 0.54 (1106) | 1.30 (1407) | ||
GGG * | 1.18 (2417) | 0.83 (898) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Wang, X.; Gong, P.; Zhang, N.; Zhang, X.; Li, J. Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB. Genes 2021, 12, 1169. https://doi.org/10.3390/genes12081169
Li X, Wang X, Gong P, Zhang N, Zhang X, Li J. Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB. Genes. 2021; 12(8):1169. https://doi.org/10.3390/genes12081169
Chicago/Turabian StyleLi, Xin, Xiaocen Wang, Pengtao Gong, Nan Zhang, Xichen Zhang, and Jianhua Li. 2021. "Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB" Genes 12, no. 8: 1169. https://doi.org/10.3390/genes12081169
APA StyleLi, X., Wang, X., Gong, P., Zhang, N., Zhang, X., & Li, J. (2021). Analysis of Codon Usage Patterns in Giardia duodenalis Based on Transcriptome Data from GiardiaDB. Genes, 12(8), 1169. https://doi.org/10.3390/genes12081169