Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats
Abstract
1. Introduction
2. Materials and Methods
2.1. Cashmere Fiber, Blood and Tissue Collection
2.2. Screening for Sequence Polymorphism in Caprine KRTAP1-2
2.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.4. Statistical Analyses
3. Results
3.1. Identification of Caprine KRTAP1-2
3.2. Expression of Caprine KRTAP1-2 in Different Tissues
3.3. Effect of Variation in Cashmere KRTAP1-2 on Three Cashmere Fiber Traits
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Powell, B.C.; Rogers, G.E. The role of keratin proteins and their genes in the growth, structure and properties of hair. EXS 1997, 78, 59–148. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Forrest, R.H.; Li, S.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G.H. Wool keratin-associated protein genes in sheep-a review. Genes 2016, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Wang, J.; Zhou, H.; Gong, H.; Tao, J.; Hickford, J.G.H. Identification of ovine KRTAP28-1 and its association with wool weight and mean fibre diameter-associated traits. Animals 2019, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Wang, J.; Li, S.; Luo, Y.; Hickford, J.G.H. Characterisation of an ovine keratin associated protein (KAP) gene, which would produce a protein rich in glycine and tyrosine, but lacking in cysteine. Genes 2019, 10, 848. [Google Scholar] [CrossRef] [PubMed]
- Parris, D.; Swart, L.S. Studies on the high-sulphur proteins of reduced mohair. The isolation and amino acid sequence of protein scmkb-m1.2. Biochem. J. 1975, 145, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, H.; Hickford, J.G.H.; Gong, H.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Luo, Y. Variation in the caprine keratin-associated protein 15-1 (KAP15-1) gene affects cashmere fibre diameter. Arch. Anim. Breed. 2019, 62, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, H.; Luo, Y.; Zhao, M.; Gong, H.; Hao, Z.; Hu, J.; Hickford, J.G.H. Variation in the caprine KAP24-1 gene affects cashmere fibre diameter. Animals 2019, 9, 15. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Hickford, J.G.H.; Zhao, M.; Gong, H.; Hao, Z.; Shen, J.; Hu, J.; Liu, X.; Li, S.; et al. Identification of caprine KRTAP28-1 and its effect on cashmere fiber diameter. Genes 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhou, H.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Hao, Z.; Jin, X.; Song, Y. Variation in the caprine keratin-associated protein 27-1 gene is associated with cashmere fiber diameter. Genes 2020, 11, 934. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, N.; Jia, C.; Zhu, X.; Jia, Z. Effect of the polymorphisms of keratin associated protein 8.2 gene on fibre traits in Inner Mongolia cashmere goats. Asian Australas. J. Anim. Sci. 2007, 20, 821–826. [Google Scholar] [CrossRef]
- Wang, J.; Che, L.; Hickford, J.G.H.; Zhou, H.; Hao, Z.; Luo, Y.; Hu, J.; Liu, X.; Li, S. Identification of the caprine keratin-associated protein 20-2 (KAP20-2) gene and its effect on cashmere traits. Genes 2017, 8, 328. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, Z.; Zhou, H.; Luo, Y.; Hu, J.; Liu, X.; Li, S.; Hickford, J.G.H. A keratin-associated protein (KAP) gene that is associated with variation in cashmere goat fleece weight. Small Rumin. Res. 2018, 167, 104–109. [Google Scholar] [CrossRef]
- Itenge-Mweza, T.O.; Forrest, R.H.J.; Mckenzie, G.W.; Hogan, A.; Abbott, J.; Amoafo, O.; Hickford, J.G.H. Polymorphism of the KAP1.1, KAP1.3 and K33 genes in Merino sheep. Mol. Cell. Probes 2007, 21, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Hickford, J.G.H. Polymorphism of the ovine keratin-associated protein 1-4 gene (KRTAP1-4). Mol. Biol. Rep. 2010, 37, 3377–3380. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Yu, Z.; Dyer, J.M.; Plowman, J.E.; Hickford, J.G.H. Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Exp. Dermatol. 2011, 20, 815–819. [Google Scholar] [CrossRef]
- Roldan, D.L.; Dodero, A.M.; Bidinost, F.; Taddeo, H.R.; Allain, D.; Poli, M.A.; Elsen, J.M. Merino sheep: A further look at quantitative trait loci for wool production. Animal 2010, 4, 1330–1340. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rogers, G.R.; Hickford, J.G.H.; Bickerstaffe, R. Polymorphism in two genes for B2 high sulfur proteins of wool. Anim. Genet. 1994, 25, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Visnovska, T.; Gong, H.; Schmeier, S.; Hickford, J.G.H.; Ganley, A.R.D. Contrasting patterns of coding and flanking region evolution in mammalian keratin associated protein-1 genes. Mol. Phylogenet. Evol. 2019, 133, 352–361. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Hodge, S.; Dyer, J.M.; Hickford, J.G.H. Association of wool traits with variation in the ovine KAP1-2 gene in Merino cross lambs. Small Rumin. Res. 2015, 124, 24–29. [Google Scholar] [CrossRef]
- Zhou, H.; Hickford, J.G.H.; Fang, Q. A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Anal. Biochem. 2006, 354, 159–161. [Google Scholar] [CrossRef]
- Byun, S.O.; Fang, Q.; Zhou, H.; Hickford, J.G.H. An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Anal. Biochem. 2009, 385, 174–175. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; Hickford, J.G.H. Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep. Mol. Biol. Rep. 2011, 38, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; McKenzie, G.W.; Yu, Z.; Clerens, S.; Dyer, J.M.; Plowman, J.E.; Wright, M.W.; Arora, R.; Bawden, C.S.; et al. An updated nomenclature for keratin-associated proteins (KAPs). Int. J. Biol. Sci. 2012, 8, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhou, H.; McKenzie, G.W.; Hickford, J.G.H.; Luo, Y.; Clerens, S.; Dyer, J.M.; Plowman, J.E. Emerging issues with the current keratin-associated protein nomenclature. Int. J. Trichol. 2010, 2, 104–115. [Google Scholar] [CrossRef]
- Gong, H.; Zhou, H.; Plowman, J.E.; Dyer, J.M.; Hickford, J.G.H. Analysis of variation in the ovine ultra-high sulphur keratin-associated protein KAP5-4 gene using PCR-SSCP technique. Electrophoresis 2010, 31, 3545–3547. [Google Scholar] [CrossRef]
- Zhou, H.; Gong, H.; Wang, J.; Dyer, J.M.; Luo, Y.; Hickford, J.G.H. Identification of four new gene members of the KAP6 gene family in sheep. Sci. Rep. 2016, 6, 24074. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, X.; Chen, H.; Wang, M.; Zhao, M.; Lan, X.; Lei, C.; Wang, K.; Lai, X.; Wang, X. The polymorphism of a novel 30bp-deletion mutation at KAP9.2 locus in the cashmere goat. Small Rumin. Res. 2008, 80, 111–115. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.; Zhu, J.; Hu, J.; Liu, X.; Li, S.; Luo, Y.; Hickford, J.G.H. Identification of the ovine keratin-associated protein 15-1 gene (KRTAP15-1) and genetic variation in its coding sequence. Small Rumin. Res. 2017, 153, 131–136. [Google Scholar] [CrossRef]
- Smith, G.R. Homologous recombination near and far from DNA breaks: Alternative roles and contrasting views. Annu. Rev. Genet. 2001, 35, 243–274. [Google Scholar] [CrossRef] [PubMed]
- Nackley, A.G.; Shabalina, S.A.; Tchivileva, I.E.; Satterfield, K.; Korchynskyi, O.; Makarov, S.S.; Maixner, W.; Diatchenko, L. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006, 314, 1930–1933. [Google Scholar] [CrossRef]
- Duan, J.; Wainwright, M.S.; Comeron, J.M.; Saitou, N.; Sanders, A.R.; Gelernter, J.; Gejman, P.V. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 2003, 12, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Gotea, V.; Gartner, J.J.; Qutob, N.; Elnitski, L.; Samuels, Y. The functional relevance of somatic synonymous mutations in melanoma and other cancers. Pigment Cell Melanoma Res. 2015, 28, 673–684. [Google Scholar] [CrossRef]
Cashmere Trait | Variant Assessed | Other Variants Fitted | Absent | Present | P Value | ||
---|---|---|---|---|---|---|---|
Mean ± SE | n | Mean ± SE | n | ||||
Raw cashmere fiber weight (g) | A | None | 407.1 ± 4.12 | 145 | 416.0 ± 4.05 | 156 | 0.075 |
B | None | 419.5 ± 3.73 | 165 | 400.0 ± 4.29 | 136 | <0.001 | |
C | None | 405.0 ± 4.80 | 108 | 414.6 ± 3.61 | 193 | 0.063 | |
A | B, C | 405.6 ± 4.71 | 145 | 412.2 ± 4.17 | 156 | 0.264 | |
B | A, C | 416.7 ± 4.52 | 165 | 401.1 ± 4.41 | 136 | 0.009 | |
C | A, B | 405.9 ± 5.19 | 108 | 411.9 ± 3.91 | 193 | 0.345 | |
Mean fiber diameter (µm) | A | None | 13.5 ± 0.04 | 145 | 13.6± 0.04 | 156 | 0.442 |
B | None | 13.7 ± 0.04 | 165 | 13.6 ± 0.04 | 136 | 0.977 | |
C | None | 13.6 ± 0.04 | 108 | 13.6 ± 0.033 | 193 | 0.357 | |
Cashmere fiber length (cm) | A | None | 4.1 ± 0.04 | 145 | 4.2 ± 0.04 | 156 | 0.099 |
B | None | 4.2 ± 0.04 | 165 | 4.2 ± 0.05 | 136 | 0.373 | |
C | None | 4.2 ± 0.05 | 108 | 4.2 ± 0.04 | 193 | 0.395 |
Genotype | Mean ± SE 1 | ||
---|---|---|---|
Raw Cashmere Fiber Weight (g) | Cashmere Fiber Length (cm) | Mean Fiber Diameter (µm) | |
AA (n = 32) | 422.8 ± 7.53 a | 4.3 ± 0.08 | 13.6 ± 0.07 |
AB (n = 50) | 408.6 ± 6.16 a | 4.2 ± 0.07 | 13.6 ± 0.06 |
AC (n = 74) | 413.9 ± 5.09 a | 4.2 ± 0.06 | 13.6 ± 0.05 |
BB (n = 26) | 369.6 ± 8.49 b | 4.1 ± 0.10 | 13.7 ± 0.08 |
BC (n = 60) | 403.4 ± 5.66 a | 4.1 ± 0.06 | 13.5 ± 0.05 |
CC (n = 59) | 423.1 ± 5.55 a | 4.2 ± 0.06 | 13.5 ± 0.05 |
P value | <0.001 | 0.165 | 0.326 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zhou, H.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Zhang, K.; Zhen, H.; Hickford, J.G.H. Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats. Genes 2021, 12, 625. https://doi.org/10.3390/genes12050625
Zhao M, Zhou H, Luo Y, Wang J, Hu J, Liu X, Li S, Zhang K, Zhen H, Hickford JGH. Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats. Genes. 2021; 12(5):625. https://doi.org/10.3390/genes12050625
Chicago/Turabian StyleZhao, Mengli, Huitong Zhou, Yuzhu Luo, Jiqing Wang, Jiang Hu, Xiu Liu, Shaobin Li, Kaiwen Zhang, Huimin Zhen, and Jon G. H. Hickford. 2021. "Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats" Genes 12, no. 5: 625. https://doi.org/10.3390/genes12050625
APA StyleZhao, M., Zhou, H., Luo, Y., Wang, J., Hu, J., Liu, X., Li, S., Zhang, K., Zhen, H., & Hickford, J. G. H. (2021). Variation in a Newly Identified Caprine KRTAP Gene Is Associated with Raw Cashmere Fiber Weight in Longdong Cashmere Goats. Genes, 12(5), 625. https://doi.org/10.3390/genes12050625