Genetic Interactions of Awnness Genes in Barley
Abstract
:1. Background
2. Interactions of Awnness Genes in Barley
3. Strategies for Mapping Interactive Genes
4. Possible Models of Awness Gene Interactions at Metabolic Level in Barley
5. Molecular Mechanisms of Awnness Gene Interactions in Barley
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ntakirutimana, F.; Xie, W. Morphological and genetic mechanisms underlying awn development in monocotyledonous grasses. Genes 2019, 10, 573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, P.C. The language of gene interaction. Genetics 1998, 149, 1167–1171. [Google Scholar] [PubMed]
- Li, H.; Liu, A.; Tang, L.; Zhang, Q.; Zou, J. Complementary genes controlling temperature-sensitive sterility in hybrids between indica and japonica types. Rice Genet. Newsl. 1995, 12, 184. [Google Scholar]
- He, G.H.; Wang, W.M.; Liu, G.Q.; Hou, L.; Pei, Y. Mapping of two fertility-restoring gene for WA cytoplasmic male sterility in Minhui63 using SSR markers. Acta Genet. Sin. 2002, 29, 798–802. [Google Scholar] [PubMed]
- Bingham, E.T.; Groose, R.W.; Woodfield, D.R.; Kidwell, K.K. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 1994, 34, 823–829. [Google Scholar] [CrossRef]
- Lee, J.M.; Bush, A.L.; Specht, J.E.; Shoemaler, R.C. Mapping of duplicate genes in soybean. Genome 1999, 42, 829–836. [Google Scholar] [CrossRef]
- Wu, J.Y.; Ding, J.Q.; Du, Y.X.; Chen, W.C. Identification and molecular tagging of two complementary dominance resistant genes to maize dwarf mosaic virus. Acta Genet. Sin. 2002, 29, 1095–1099. [Google Scholar]
- Huang, B. Genetic analysis of purple and waxy grain in wheat. Sci. Agric. Sin. 2011, 44, 3501–3507. [Google Scholar]
- Yoshioka, M.; Iehisa, J.C.M.; Ohno, R.; Kimura, T.; Enoki, H.; Nishimura, S.; Nasuda, S.; Takumi, S. Three dominant awnless genes in common wheat: Fine mapping, interaction and contribution to diversity in awn shape and length. PLoS ONE 2017, 12, e0176148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; Lu, Y. Study on the heredity of color and fertility in rice. Fujian J. Agric. Sci. 2002, 17, 215–216. [Google Scholar]
- Paramasivam, K.S. The relation between F2 segregation pattern and heterosis prediction in rice, Oryza sativa L. Madras Agric. J. 1986, 73, 573–578. [Google Scholar]
- Luo, J.; Liu, H.; Zhou, T.; Gu, B.; Huang, X.; Shangguan, Y.; Zhu, J.; Li, Y.; Zhao, Y.; Wang, Y.; et al. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell 2013, 25, 3360–3376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, B.; Zhou, T.; Luo, J.; Liu, H.; Wang, Y.; Shangguan, Y.; Zhu, J.; Li, Y.; Sang, T.; Wang, Z.; et al. An-2 encodes a cytokinin synthesis enzyme that regulates awn length and grain production in rice. Mol. Plant 2015, 8, 1635–1650. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.D.; Li, H.B.; Zheng, Z.; Wei, Y.M.; Zheng, Y.L.; McIntyre, C.L.; Zhou, M.X.; Liu, C.J. Characterization of a QTL affecting spike morphology on the long arm of chromosome 3H in barley (Hordeum vulgare L.) based on near isogenic lines and a NIL-derived population. Theor. Appl. Genet. 2012, 125, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Franckowiak, J.D.; Foster, A.E.; Pederson, V.D.; Pyler, R.E. Registration of ‘Bowman’ barley. Crop Sci. 1985, 25, 883. [Google Scholar] [CrossRef]
- Franckowiak, J.D.; Kleinhofs, A.; Lundqvist, U. Descriptions of barley genetic stocks for 2016. Barley Genet. Newsl. 2016, 46, 1–47. [Google Scholar]
- Druka, A.; Franckowiak, J.; Lundqvist, U.; Bonar, N.; Alexander, J.; Houston, K.; Radovic, S.; Shahinnia, F.; Vendramin, V.; Morgante, M.; et al. Genetic dissection of barley morphology and development. Plant Physiol. 2011, 155, 617–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K.J. The barley hooded mutation caused by a duplication in a homeobox gene intron. Nature 1995, 374, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Komatsuda, T.; Pourkheirandish, M.; He, C.; Azhaguvel, P.; Kanamori, H.; Perovic, D.; Stein, N.; Graner, A.; Wicker, T.; Tagiri, A.; et al. Sixrowed barley originated from a mutation in a homeodomain leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. USA 2007, 104, 1424–1429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzi, V.; Tumino, G.; Pagani, D.; Rizza, F.; Ghizzoni, R.; Morcia, C.; Stanca, A.M. Barley developmental mutants: The high road to understand the cereal spike morphology. Diversity 2017, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Huang, D.; Hong, Z.; Owie, S.O.; Wu, W. Genetic analysis reveals four interacting loci underlying awn trait diversity in barley (Hordeum vulgare). Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Myler, J.L. Awn inheritance in barley. J. Agric. Res. 1942, 65, 405–412. [Google Scholar]
- Woodward, R.W.; Rasmussen, D.C. Hood and awn development in barley determined by two gene pairs. Agron. J. 1957, 49, 92–94. [Google Scholar] [CrossRef]
- Chen, W. Genetic study on prism quantity and awned shape of barley. Fujian Agric. 2014, 8, 144–146. [Google Scholar]
- Wang, Z.; Tang, Z.; Xiong, S. Genetic study on prism quantity and awned shape of barley. J. Sichuan Teach. Coll. (Nat. Sci.) 1993, 14, 138–139. [Google Scholar]
- Miyake, K.; Imai, Y. Genetic studies in barley. I. Bot. Mag. Tokyo 1922, 36, 25–38. [Google Scholar] [CrossRef]
- Huang, D.; Zheng, Q.; Melchkart, T.; Bekkaoui, Y.; Konkin, D.J.F.; Kagale, S.; Martucci, M.; You, F.M.; Clarke, M.; Adamski, N.M.; et al. Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytol. 2020, 225, 340–355. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, C.; Faccioli, P.; Terzi, V.; Stanca, A.M.; Cerioli, S.; Castiglioni, P.; Fink, R.; Capone, R.; Müller, K.J.; Bossinger, G.; et al. Genetics of mutations affecting the development of a barley floral bract. Genetics 2000, 154, 1335–1346. [Google Scholar] [PubMed]
- Ahuja, S.L.; Sethi, G.S. Allelic relationships of genes for long awned mutants in barley Hordeum vulgare. Bangladesh J. Bot. 1988, 17, 81–84. [Google Scholar]
- Grunewaldt, J. The transmission of awn-length in barley: I. Factor analysis of a short awned mutant and an awnless primitive form. Theor. Appl. Genet. 1974, 44, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Litzenberger, S.C.; Green, J.M. Inheritance of awns in barley. Agron. J. 1951, 43, 117–123. [Google Scholar] [CrossRef]
- Leonard, W.H. Inheritance of reduced lateral spikelet appendages in the Nudihaxtoni variety of barley. J. Am. Soc. Agron. 1942, 34, 211–221. [Google Scholar] [CrossRef]
- Takahashi, R.; Hayashi, J. Studies on classification and inheritance of barley varieties having awnless or shorter-awned lateral spikelets (Bozu barley). II. Mode of inheritance of spike characteristics of Bozu barley-1. Nogaku Kenkyu 1982, 60, 25–37. [Google Scholar]
- Robertson, D.W.; Immer, F.R.; Wiebe, G.A.; Stevens, H. The location of two genes for mature plant characters in barley in linkage group I. J. Am. Soc. Agron. 1944, 36, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Youssef, H.M.; Eggert, K.; Koppolu, R.; Alqudah, A.M.; Poursarebani, N.; Fazeli, A.; Sakuma, S.; Tagiri, A.; Rutten, T.; Govind, G.; et al. VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 2017, 49, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Roig, C.; Pozzi, C.; Santi, L.; Müller, J.; Wang, Y.; Stile, M.R.; Rossini, L.; Stanca, M.; Salamini, F. Genetics of barley hooded suppression. Genetics 2004, 167, 439–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramage, R.T. Alleles at the short-awned loci lk2 on chromosome 1 and lk5 on chromosome 4. Barley Genet. Newsl. 1986, 16, 22–23. [Google Scholar]
- Wu, W.; Huang, B. Strategy for the mapping of interactive genes using bulked segregant analysis method and Mapmaker/Exp software. Chin. Sci. Bull. 2006, 51, 2619–2623. [Google Scholar] [CrossRef]
- Huang, B.; Wu, W.; Liu, S.; Huang, Z. Genetic analysis on poly-row-and-branched spike mutant in barley. Hereditas (Beijing) 2004, 26, 903–906. [Google Scholar]
- Huang, B.; Wu, W. Mapping of mutant gene prbs controlling poly-row-and-branched spike in barley (Hordeum vulgare L.). Agric. Sci. China 2011, 10, 1501–1505. [Google Scholar] [CrossRef]
- Winter, P.C.; Hickey, G.I.; Fletcher, H.L. (Eds.) More Mendelian genetics. In Instant Notes in Genetics; BIOS Scientific Publishers Limited: Oxford, UK, 1998; pp. 126–133. [Google Scholar]
- McCoy, S.B. Understanding Epistasis in Linkage Analysis: The Kap and lks2 Loci in the Oregon Wolfe Barley Population. Bachelor’s Thesis, Oregon State University, Corvallis, OR, USA, 2000. [Google Scholar]
- Yuo, T.; Yamashita, Y.; Kanamori, H.; Matsumoto, T.; Lundqvist, U.; Sato, K.; Ichii, M.; Jobling, S.A.; Taketa, S. A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J. Exp. Bot. 2012, 63, 5223–5232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuusk, S.; Sohlberg, J.J.; Eklund, D.M.; Sundberg, E. Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J. 2006, 47, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Lyu, T.; Liu, W.; Hu, Z.; Xiang, X.; Liu, T.; Xiong, X.; Cao, J. Molecular characterization and expression analysis reveal the roles of Cys2/His2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. Plant Mol. Biol. 2020, 102, 123–141. [Google Scholar]
- Mulki, M.A.; Bi, X.; von Korff, M. FLOWERING LOCUS T3 controls spikelet initiation but not floral development. Plant Physiol. 2018, 178, 1170–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechtold, U.; Penfold, C.A.; Jenkins, D.J.; Legaie, R.; Moore, J.D.; Lawson, T.; Matthews, J.S.A.; Vialet-Chabrand, S.R.M.; Baxter, L.; Subramaniam, S.; et al. Time-series transcriptomics reveals that AGAMOUS-LIKE22 affects primary metabolism and developmental processes in drought-stressed Arabidopsis. Plant Cell 2016, 28, 345–366. [Google Scholar] [CrossRef] [Green Version]
Interaction | Genes | Segregation in F2 generation | Reference |
---|---|---|---|
Comp. | N/n and H/h | 9 HA (N_H_): 7 NA (N_hh + nnH_ + nnhh) | [26] |
Dup. | Lel1/lel1 and Lel2/lel2 | 15 NA (Lel1_Lel2_ + Lel1_lel2lel2 + lel1lel1Lel2_): 1 LF (lel1lel1lel2lel2) | [28] |
Cum. | Lks2/lks2 and Lks5/lks5 | 9 LA (Lks2_ Lks5_): 6 SA (Lks2_ lks5lks5 +lks2lks2 Lks5_): 1 AL (lks2lks2 lks5lks5) | [31] |
Rec. epi. | Lks2/lls2 and Kap1/kap1 | 9 HA (Lls2_Kap1_): 3 LA (Lks2_kap1kap1): 4 SA (lks2lks2Kap1_ + lks2lks2kap1kap1) | [23] |
Dom. epi. | Lsa1/lsa1 and Kap1/kap1 | 12 AL (Lsa1_Kap1_ + Lsa1_kap1kap1): 3 HA (lsa1 lsa1Kap1_): 1 ST (lsa1 lsa1kap1kap1) | [21] |
Inh. | S/s and A/a | 13 AL (S_A_ + S_aa + ssaa): 3 LA (ssA_) | [30] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, B.; Wu, W.; Hong, Z. Genetic Interactions of Awnness Genes in Barley. Genes 2021, 12, 606. https://doi.org/10.3390/genes12040606
Huang B, Wu W, Hong Z. Genetic Interactions of Awnness Genes in Barley. Genes. 2021; 12(4):606. https://doi.org/10.3390/genes12040606
Chicago/Turabian StyleHuang, Biguang, Weiren Wu, and Zonglie Hong. 2021. "Genetic Interactions of Awnness Genes in Barley" Genes 12, no. 4: 606. https://doi.org/10.3390/genes12040606
APA StyleHuang, B., Wu, W., & Hong, Z. (2021). Genetic Interactions of Awnness Genes in Barley. Genes, 12(4), 606. https://doi.org/10.3390/genes12040606