Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca
Abstract
:1. Introduction
2. Results
2.1. Identification of Candidate Imprinted Genes
2.2. SNP Information of Candidate Imprinted Genes in Parents
2.3. Biallelic Expression of FvTAR4 and FvCAL Genes in Endosperm
2.4. Five Genes Show Imprinting in the Endosperm of Wild Strawberry
2.5. Candidate Imprinted Genes Show Non-Imprinting in the Embryos
2.6. Expression Patterns of Imprinted Genes in Different Tissues
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Acquisition of Candidate Imprinted Genes
4.3. RNA Isolation and Cloning of Candidate Imprinted Genes
4.4. Identification of Imprinted Genes in Wild Strawberry
4.5. Expression Profiles Analysis of Imprinted Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Köhler, C.; Wolff, P.; Spillane, C. Epigenetic mechanisms underlying genomic imprinting in plants. Annu. Rev. Plant Biol. 2012, 63, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.D.; Grossniklaus, U. Different yet similar: Evolution of imprinting in flowering plants and mammals. F1000prime Rep. 2014, 6, 63. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, S.; Scholten, S. Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol. 2009, 19, 1677–1681. [Google Scholar] [CrossRef] [Green Version]
- Gehring, M.; Missirian, V.; Henikoff, S. Genomic analysis of parent-of-origin allelic expression in Arabidopsis thaliana seeds. PLoS ONE 2011, 6, e23687. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.-F.; Shin, J.; Uzawa, R.; Silva, P.; Cohen, S.; Bauer, M.J.; Kirkbride, R.C.; Harada, J.J.; Zilberman, D.; Fischer, R.L. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc. Natl. Acad. Sci. USA 2011, 108, 1755–1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León, G.D.T.-D.; García-Aguilar, M.; Gillmor, C.S. Nonequivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 2014, 514, 624–627. [Google Scholar] [CrossRef]
- Pignatta, D.; Erdmann, R.M.; Scheer, E.; Picard, C.L.; Bell, G.W.; Gehring, M. Natural epigenetic polymorphisms lead to intraspecific variation in Arabidopsis gene imprinting. eLife 2014, 3, e03198. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.J.; Spielman, M.; Bailey, J.; Dickinson, H.G. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 2000, 125, 3329–3341. [Google Scholar]
- Vinkenoog, R.; Scott, R.J. Autonomous endosperm development in flowering plants: How to overcome the imprinting problem? Sex. Plant Reprod. 2001, 14, 189–194. [Google Scholar] [CrossRef]
- Baroux, C.; Grossniklaus, U. Seeds—An evolutionary innovation underlying reproductive success in flowering plants. Curr. Top. Dev. Biol. 2019, 131, 605–642. [Google Scholar] [PubMed]
- Batista, R.A.; Köhler, C. Genomic imprinting in plants—revisiting existing models. Genes Dev. 2020, 34, 24–36. [Google Scholar] [CrossRef]
- Köhler, C.; Hennig, L.; Bouveret, R.; Gheyselinck, J.; Grossniklaus, U.; Gruissem, W. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 2003, 22, 4804–4814. [Google Scholar] [CrossRef] [Green Version]
- Gehring, M.; Choi, Y.; Fischer, R.L. Imprinting and seed development. Plant Cell 2004, 16, S203–S213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, T.; Yadegari, R.; Harada, J.; Goldberg, R.; Fischer, R. Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 1999, 11, 1945–1952. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Bilodeau, P.; Dennis, E.S.; Peacock, W.J.; Chaudhury, A. Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc. Natl. Acad. Sci. USA 2000, 97, 10637–10642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossniklaus, U.; Vielle-Calzada, J.P.; Hoeppner, M.A.; Gagliano, W.B. Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 1998, 280, 446–450. [Google Scholar] [CrossRef]
- Haun, W.J.; Laoueillé-Duprat, S.; O’Connell, M.J.; Spillane, C.; Grossniklaus, U.; Phillips, A.R.; Kaeppler, S.M.; Springer, N.M. Genomic imprinting, methylation and molecular evolution of maize Enhancer of zeste (Mez) homologs. Plant J. 2007, 49, 325–337. [Google Scholar] [CrossRef]
- Danilevskaya, O.N.; Hermon, P.; Hantke, S.; Muszynski, M.G.; Kollipara, K.; Ananiev, E.V. Duplicated fie genes in maize: Expression pattern and imprinting suggest distinct functions. Plant Cell 2003, 15, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Platten, D.; Chaudhury, A.; Peacock, W.J.; Dennis, E.S. Expression, imprinting, and evolution of rice homologs of the Polycomb group genes. Mol. Plant. 2009, 2, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, H.; Xie, S.; Chen, J.; Xu, Y.; Wang, K.; Zhao, H.; Guan, H.; Hu, X.; Jiao, Y.; et al. Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc. Natl. Acad. Sci. USA 2011, 108, 20042–20047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Dai, M.; Li, F.; Liu, A. Genomic imprinting, methylation and parent-of-origin effects in reciprocal hybrid endosperm of castor bean. Nucleic Acids Res. 2014, 42, 6987–6998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, A.J.; Makarevitch, I.; Eichten, S.R.; Swanson-Wagner, R.A.; Yeh, C.T.; Xu, W.; Schnable, P.S.; Vaughn, M.W.; Gehring, M.; Springer, N.M. Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 2011, 23, 4221–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermicle, J.L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 1970, 66, 69–85. [Google Scholar] [CrossRef]
- Wolff, P.; Weinhofer, I.; Seguin, J.; Roszak, P.; Beisel, C.; Donoghue, M.T.; Spillane, C.; Nordborg, M.; Rehmsmeier, M.; Köhler, C. High-resolution analysis of parent-of-origin allelic expression in the Arabidopsis endosperm. Plos Genet. 2011, 7, e1002126. [Google Scholar] [CrossRef]
- Klosinska, M.; Picard, C.; Gehring, M. Conserved imprinting associated with unique epigenetic signatures in the Arabidopsis genus. Nat. Plants 2016, 2, 16145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, M.; Taylor, J.M.; Spriggs, A.; Zhang, H.; Wu, X.; Russell, S.; Singh, M.; Koltunow, A. A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet. 2011, 7, e1002125. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.A.; Ruan, R.; Nishimura, T.; Sharma, M.K.; Sharma, R.; Ronald, P.C.; Fischer, R.L.; Zilberman, D. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc. Natl. Acad. Sci. USA 2013, 110, 7934–7939. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Chen, S.; Jiao, W.; Wang, L.; Wang, L.; Ye, W.; Lu, J.; Hong, D.; Cheng, Z.; Yang, D.; et al. Both maternally and paternally imprinted genes regulate seed development in rice. New Phytol. 2017, 10, 111. [Google Scholar] [CrossRef] [Green Version]
- Xin, M.; Yang, R.; Li, G.; Chen, H.; Laurie, J.; Ma, C.; Wang, D.; Yao, Y.; Larkins, B.A.; Sun, Q.; et al. Dynamic expression of imprinted genes associates with maternally controlled nutrient allocation during maize endosperm development. Plant Cell 2013, 25, 3212–3227. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, N.; He, W.; Zhang, H.; Yang, W.; Liu, B. Genome-wide screen of genes imprinted in sorghum endosperm, and the roles of allelic differential cytosine methylation. Plant J. 2016, 85, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Liu, Z.; Gao, L.; Yu, K.; Feng, M.; Yao, Y.; Peng, H.; Hu, Z.; Sun, Q.; Ni, Z.; et al. Genomic imprinting was evolutionarily conserved during wheat polyploidization. Plant Cell 2018, 30, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Florez-Rueda, A.M.; Paris, M.; Schmidt, A.; Widmer, A.; Grossniklaus, U.; Städler, T. Genomic imprinting in the endosperm is systematically perturbed in abortive hybrid tomato seeds. Mol. Biol. Evol. 2016, 33, 2935–2946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.; Florez-Rueda, A.M.; Paris, M.; Städler, T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. Plant J. 2018, 95, 1084–1101. [Google Scholar] [CrossRef]
- Hatorangan, M.R.; Laenen, B.; Steige, K.A.; Köhler, C. Rapid evolution of genomic imprinting in two species of the Brassicaceae. Plant Cell 2016, 28, 1815–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Li, J.; Liu, H.; Fan, H.; Surinder, S.; Zhou, X.; Hu, Z.; Wang, H.; Wei, H. Genome-wide screening and analysis of imprinted genes in rapeseed (Brassica napus L.) endosperm. DNA Res. 2018, 25, 629–640. [Google Scholar] [CrossRef]
- Yoshida, T.; Kawanabe, T.; Bo, Y.; Fujimoto, R.; Kawabe, A. Genome-wide analysis of parent-of-origin allelic expression in endosperms of Brassicaceae species, Brassica rapa. Plant Cell Physiol. 2018, 59, 2590–2601. [Google Scholar] [CrossRef]
- Chen, C.; Li, T.; Zhu, S.; Liu, Z.; Shi, Z.; Zheng, X.; Chen, R.; Huang, J.; Shen, Y.; Luo, S.; et al. Characterization of imprinted genes in rice reveals conservation of regulation and imprinting with other plant species. Plant. Physiol. 2018, 177, 1754–1771. [Google Scholar] [CrossRef] [Green Version]
- Tuteja, R.; McKeown, P.C.; Ryan, R.; Morgan, C.C.; Donoghue, M.T.A.; Downing, T.; O’Connell, M.J.; Spillane, C. Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana. Mol. Biol. Evol. 2019, 36, 1239–1253. [Google Scholar] [CrossRef]
- Picard, C.L.; Gehring, M. Identification and comparison of imprinted genes across plant species. In Plant Epigenetics and Epigenomics, 2nd ed.; Spillane, C., McKeown, P., Eds.; Methods in Molecular Biology: New York, NY, USA, 2020; Volume 2093, pp. 173–201. [Google Scholar]
- Lawson, H.A.; Cheverud, J.M.; Wolf, J.B. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 2013, 14, 609–617. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tsukamoto, T.; Noble, J.A.; Liu, X.; Mosher, R.A.; Palanivelu, R. Arabidopsis LORELEI, a maternally expressed imprinted gene, promotes early seed development. Plant Physiol. 2017, 175, 758–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Sun, Y.; Yang, Q.; Zhang, X.; Huang, Q.; Zhao, P.; Sun, M.; Liu, J.; Qian, W.; Qin, G.; et al. A novel imprinted gene NUMA controls mitochondrial function in early seed development in Arabidopsis. PloS Genet. 2017, 13, e1006553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, Y.; Adams, K.L. Extensive allelic variation in gene expression in Populus F1 hybrids. Genetics 2007, 177, 1987–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Korff, M.; Radovic, S.; Choumane, W.; Stamati, K.; Udupa, S.M.; Grando, S.; Ceccarelli, S.; Mackay, I.; Powell, W.; Baum, M.; et al. Asymmetric allele-specific expression in relation to developmental variation and drought stress in barley hybrids. Plant J. 2009, 59, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Takamiya, T.; Hosobuchi, S.; Noguchi, T.; Paterson, A.H.; Lijima, H.; Murakami, Y.; Okuizumi, H. The application of restriction landmark genome scanning method for surveillance of non-Mendelian inheritance in F1 hybrids. Comp. Funct. Genom. 2009, 2009, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Borevitz, J.O. Global analysis of allele-specific expression in Arabidopsis thaliana. Genetics 2009, 182, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Xin, M.; Yang, R.; Yao, Y.; Ma, C.; Peng, H.; Sun, Q.; Wang, X.; Ni, Z. Dynamic parent-of-origin effects on small interfering RNA expression in the developing maize endosperm. BMC Plant Biol. 2014, 14, 192. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xie, S.; Dong, X.; Zhao, X.; Zeng, B.; Chen, J.; Li, H.; Yang, W.; Zhao, H.; Wang, G. Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize. Genome Res. 2014, 24, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Mladek, C.; Guger, K.; Hauser, M.T. Identification and characterization of the ARIADNE gene family in Arabidopsis. A group of putative E3 ligases. Plant Physiol. 2003, 131, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Sadhukhan, A.; Panda, S.K.; Sahoo, L. The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses. Plant Physiol. Biochem. 2014, 83, 51–56. [Google Scholar] [CrossRef]
- Draper, B.W.; Mello, C.C.; Bowerman, B.; Hardin, J.; Priess, J.R. MEX-3 is a KH domain protein that regulates blastomere similarity in early celegans embryos. Cell 1996, 87, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Valverde, R.; Edwards, L.; Regan, L. Structure and function of KH domains. FEBS J. 2008, 275, 2712–2726. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, G.; García-Mayoral, M.F.; Hollingworth, D.; Kelly, G.; Martin, S.R.; Briata, P.; Gherzi, R.; Ramos, A. Noncanonical G recognition mediates KSRP regulation of let-7 biogenesis. Nat. Struct. Mol. Biol. 2012, 19, 1282–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sautron, E.; Mayerhofer, H.; Giustini, C.; Danièle, P.; Crouzy, S.; Stéphanie, R.; Pebay-Peyroula, E.; Rolland, N.; Catty, P.; Daphné, S.B. HMA6 and HMA8 are two chloroplast Cu+-ATPases with different enzymatic properties. Biosci. Rep. 2015, 35, e00201. [Google Scholar] [CrossRef] [PubMed]
- Buhot, N.; Douliez, J.P.; Jacquemard, A.; Marion, D.; Tran, V.; Maume, B.F.; Milat, M.L.; Ponchet, M.; Mikes, V.; Kader, J.C.; et al. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett. 2001, 509, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Jang, C.; Lee, H.; Chang, S.; Seo, Y. Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat (Triticum aestivum L.). Plant Sci. 2004, 167, 995–1001. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Dai, M. Verification, Characteristics and Preliminary Analysis of Imprinted Genes in Castor Endosperm. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Liu, G.; Qian, J. A Method for Quantitative Analysis of Base Variation Ratio Based on Sequencing Peak Shape Graph. China Medical University, Beijing, China. CN103559428A, 5 February 2014. [Google Scholar]
- Abramoff, M. Image Processing with Image. Biophotonics Int. 2003, 11, 36–42. [Google Scholar]
- Gehring, M.; Satyaki, P.R. Endosperm and imprinting, inextricably linked. Plant Physiol. 2017, 173, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.N.; Springer, N.M. Potential roles for transposable elements in creating imprinted expression. Curr. Opin. Genet. Dev. 2018, 49, 8–14. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Query Sequence | BLASTP Result | Gene name | E-Value | Similarity (%) | Length of Coded Proteins/aa |
---|---|---|---|---|---|
AtMEA | Not found | ||||
AtFIE | XP_004294343.1 | FvFIE | 0 | 75.48 | 370 |
AT5G22200 | XP_004303497.1 | FvYLS9 | 0 | 69.3 | 210 |
AT1G24020 | XP_004297655.1 | FvMLP | 0 | 71.25 | 157 |
AT2G27385 | XP_004291583.1 | FvUNP | 1 × 10−42 | 50.53 | 178 |
AT2G31510 | XP_004302175.1 | FvARI8 | 0 | 74.5 | 596 |
AT3G08620 | XP_004302513.1 | FvKH | 0 | 85.92 | 282 |
AT5G10140 | XP_004306305.1 | FvCAL | 1 × 10−20 | 50.68 | 219 |
AT1G07705 | XP_004294625.1 | FvVIP2 | 4 × 10−137 | 75.75 | 664 |
AT2G03110 | XP_011467948.1 | FvKHDP-2 | 0 | 50.98 | 549 |
AT3G23060 | XP_004289907.1 | FvDRIP2 | 0 | 41.41 | 426 |
AT4G16380 | XP_004293392.1 | FvBRO1 | 1 × 10−30 | 49.63 | 267 |
AT1G62790 | XP_004298676.1 | FvLTP3 | 1 × 10−17 | 45.45 | 151 |
AT1G62790 | XP_011464483.1 | FvYLS3 | 2 × 10−32 | 44.19 | 169 |
AT3G49540 | XP_004307185.1 | FvUNP1 | 1 × 10−22 | 57.38 | 185 |
AT3G49540 | XP_004300088.1 | FvMIA40 | 5 × 10−16 | 46.88 | 144 |
AT3G49540 | XP_004290526.1 | FvAMI | 0 | 60.57 | 603 |
AT1G23320 | XP_004290481.1 | FvTAR4 | 2 × 10−74 | 43.5 | 485 |
Imprinted Genes of A. thaliana | Conserved Imprinted Genes of Four Species a | ||||
---|---|---|---|---|---|
Oryza sativa | Zea mays | Sorghum bicolor | Ricinus communis | References | |
AtMEA m | ZmMez1 m | [14,17] | |||
AtFIE m | OsFIE1m | ZmFIE1 m | [15,18,19] | ||
AT5G22200 m | LOC_Os04g58860 m | GRMZM2G358540 m | [37] | ||
AT5G22200 m | LOC_Os11g05860 m | [37] | |||
AT1G24020 m | LOC_Os04g39150 m | GRMZM2G102356 m | [37] | ||
AT2G27385 m | LOC_Os10g05750 m | GRMZM2G003909 m | [37] | ||
AT2G31510 m | LOC_Os04g41470 p | GRMZM2G006428 p | [37] | ||
AT3G08620 m | LOC_Os07g12490 p | GRMZM2G472052 p | 29765.m000727 m | [21,37] | |
AT5G10140 p | LOC_Os12g10540 m | GRMZM2G010669 m | [37] | ||
AT1G07705 p | LOC_Os02g54120 p | Sb04g035110 p | [37] | ||
AT2G03110 m | LOC_Os10g35220 p | Sb07g005630 p | [37] | ||
AT3G23060 m | LOC_Os12g40790 m | Sb08g020500 m | [37] | ||
AT4G16380 m | LOC_Os05g13940 m | Sb08g022000 p | [37] | ||
AT1G62790 m | 30190.m011003 m | [58] | |||
AT3G49540 m | LOC_Os09g31080 m | GRMZM2G129781 m | Sb02g003315 m | [37] | |
AT1G23320 p | LOC_Os05g07720 p | GRMZM2G127160 p | Sb09g005080 m | [37] |
Gene Name | Froward Primer (5′–3′) | Reverse Primer (5′–3′) | Expected Size/bp |
---|---|---|---|
FvFIE | ATGGCCAAGTTCGCTTTG | TCAAGAATTTTCCATGACATCCC | 1113 |
FvYLS9 | ATGTCTTCGAAAGACTGCG | TCATATGCTTACCTTGCATCGC | 633 |
FvMLP | ATGGCGCCTTCAGATGTTGG | TCAATGAGCGAGGACATAGTC | 474 |
FvUNP | ATGGCTACTCTTTCCGGC | TTAGGGTATGCCTATGATAGGGAAG | 537 |
FvARI8 | ATGGAATCAGAGGACGATTTCG | CTACCGGCGTTGTTGGCA | 1791 |
FvKH | ATGTCAGGGTTGTATAATCCC | TCATCGACCTGTTTTGGCAC | 849 |
FvCAL | ATGGGAAGAGGGAAGGTGC | CTAAAACAAATTAAGCACTGGATG | 660 |
FvVIP2 | ATGTCTGGATTACTTAAT | TCAGTGCTGAGGTAACGT | 1995 |
FvKHDP-2 | ATGGCCGGCCAGAGAAACA | AATGTAACCATAGTTTCTCCGCCG | 1647 |
FvDRIP2 | ATGGCGAATCAGGTGGTG | GAGGTACAATAATGGCAATGG | 1281 |
FvBRO1 | ATGGGCGAAAAAAAGGTGACG | TTACATGATGGCGCACGCTT | 804 |
FvLTP3 | ATGGGTTGCGGCAACATTTC | CTAGTAATACATGACGGAAGCC | 456 |
FvYLS3 | ATGGCTTCAAAGTGTCTGTT | CTAAAATGCTGCTGCTGGAAT | 510 |
FvUNP1 | ATGGGTGCTTCCAACTCCAT | CTATTGCTTCCCCTCAGACGAA | 558 |
FvMIA40 | ATGGGAGGTGCTTCCATCAC | CTAACCTTCTTGCTTGTCAG | 435 |
FvAMI | ATGGCGGATCAGGAGGATGA | TCAGACAATACTAGGCGCATCC | 1812 |
FvTAR4 | ATGGCTAAGCTACAACAAAGCTCC | CTACTTACGTGACTTGCGTCT | 1458 |
Gene name | Froward Primer (5′–3′) | Reverse Primer (5′–3′) | Expected Size/bp |
---|---|---|---|
FvARI8 | CATCCAGTGCCAACCTGAGT | GGCATGTTCGTGGTCAGGTA | 152 |
FvKHDP-2 | AGCTCAGGGTGGACACAAAG | TCCTCAAAGCCGTTCGTCTC | 178 |
FvDRIP2 | ATGGCGAATCAGGTGGTGAA | ACACTGCCCAGATCGGTTTT | 197 |
FvBRO1 | CTTACTGCGCCTCCGTTTCC | AGGGTTAGCAGGAACAACCG | 168 |
FvLTP3 | ACCTCAACAACACCGACCAA | TGGCGATTCTAACAGCGGAG | 153 |
EF1-α | CATGCGCCAGACTGTTGCTGT | GACCGACTCAGAATACTAGTAGC | 186 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Jing, X.; Zhang, H.; Xiong, J.; Qiao, Y. Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes 2021, 12, 380. https://doi.org/10.3390/genes12030380
Liu Y, Jing X, Zhang H, Xiong J, Qiao Y. Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes. 2021; 12(3):380. https://doi.org/10.3390/genes12030380
Chicago/Turabian StyleLiu, Yaping, Xiaotong Jing, Hong Zhang, Jinsong Xiong, and Yushan Qiao. 2021. "Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca" Genes 12, no. 3: 380. https://doi.org/10.3390/genes12030380
APA StyleLiu, Y., Jing, X., Zhang, H., Xiong, J., & Qiao, Y. (2021). Identification of Imprinted Genes Based on Homology: An Example of Fragaria vesca. Genes, 12(3), 380. https://doi.org/10.3390/genes12030380