A Custom Target Next-Generation Sequencing 70-Gene Panel and Replication Study to Identify Genetic Markers of Diabetic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Targeted Next-Generation Sequencing
2.3. Bioinformatic Analyses
2.4. Selection of Variants
2.5. Gene–Gene Interaction Analysis
2.6. In Silico Study
2.7. Statistical Analysis
3. Results
3.1. Discovery Cohorts
3.2. Validation Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BWA | Burrows–Wheeler Aligner |
CKD | Chronic kidney disease |
DKD | Diabetic kidney disease |
eGFR | Estimated glomerular filtration rate |
ESRD | End-stage renal disease |
GO | Gene Ontology |
NGS | Next-generation sequencing |
OMIM | Online Mendelian Inheritance in Man |
OR | Odds ratio |
T2D | Type 2 diabetes |
References
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [PubMed]
- McKnight, A.J.; Duffy, S.; Maxwell, A.P. Genetics of diabetic nephropathy: A long road of discovery. Curr. Diabetes Rep. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Florez, J.C. Genetics of Diabetic Kidney Disease. Semin. Nephrol. 2016, 36, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.F. Genetic and Epigenetic Studies in Diabetic Kidney Disease. Front. Genet. 2019, 10, 507. [Google Scholar] [CrossRef]
- Renkema, K.Y.; Stokman, M.F.; Giles, R.H.; Knoers, N.V. Next-generation sequencing for research and diagnostics in kidney disease. Nat. Rev. Nephrol. 2014, 10, 433–444. [Google Scholar] [CrossRef]
- Zhu, N.A.; Harris, S.B. Therapeutic Inertia in People With Type 2 Diabetes in Primary Care: A Challenge That Just Won’t Go Away. Diabetes Spectr. 2020, 33, 44–49. [Google Scholar] [CrossRef]
- Todd, J.N.; Srinivasan, S.; Pollin, T.I. Advances in the Genetics of Youth-Onset Type 2 Diabetes. Curr. Diabetes Rep. 2018, 18, 57. [Google Scholar] [CrossRef]
- Maric-Bilkan, C. Sex Differences in Diabetic Kidney Disease. Mayo Clin. Proc. 2020, 95, 587–599. [Google Scholar] [CrossRef] [Green Version]
- Junyent, M.; Martinez, M.; Borras, M.; Coll, B.; Valdivielso, J.M.; Vidal, T.; Sarro, F.; Roig, J.; Craver, L.; Fernandez, E. Predicting cardiovascular disease morbidity and mortality in chronic kidney disease in Spain. The rationale and design of NEFRONA: A prospective, multicenter, observational cohort study. BMC Nephrol. 2010, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Calleros-Basilio, L.; Cortes, M.A.; Garcia-Jerez, A.; Luengo-Rodriguez, A.; Orozco-Agudo, A.; Valdivielso, J.M.; Rodriguez-Puyol, D.; Rodriguez-Puyol, M. Quality Assurance of Samples and Processes in the Spanish Renal Research Network (REDinREN) Biobank. Biopreserv. Biobank 2016, 14, 499–510. [Google Scholar] [CrossRef]
- Franz, M.; Rodriguez, H.; Lopes, C.; Zuberi, K.; Montojo, J.; Bader, G.D.; Morris, Q. GeneMANIA update 2018. Nucleic. Acids Res. 2018, 46, W60–W64. [Google Scholar] [CrossRef] [Green Version]
- Guan, M.; Keaton, J.M.; Dimitrov, L.; Hicks, P.J.; Xu, J.; Palmer, N.D.; Wilson, J.G.; Freedman, B.I.; Bowden, D.W.; Ng, M.C.Y. An Exome-wide Association Study for Type 2 Diabetes-Attributed End-Stage Kidney Disease in African Americans. Kidney Int. Rep. 2018, 3, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Guan, M.; Ma, J.; Keaton, J.M.; Dimitrov, L.; Mudgal, P.; Stromberg, M.; Bonomo, J.A.; Hicks, P.J.; Freedman, B.I.; Bowden, D.W.; et al. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans. Hum. Genet. 2016, 135, 1251–1262. [Google Scholar] [CrossRef] [Green Version]
- Ilatovskaya, D.V.; Levchenko, V.; Lowing, A.; Shuyskiy, L.S.; Palygin, O.; Staruschenko, A. Podocyte injury in diabetic nephropathy: Implications of angiotensin II-dependent activation of TRPC channels. Sci. Rep. 2015, 5, 17637. [Google Scholar] [CrossRef]
- Kang, J.S.; Lee, S.J.; Lee, J.H.; Kim, J.H.; Son, S.S.; Cha, S.K.; Lee, E.S.; Chung, C.H.; Lee, E.Y. Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Sci. Rep. 2019, 9, 7679. [Google Scholar] [CrossRef] [Green Version]
- Cechova, S.; Dong, F.; Chan, F.; Kelley, M.J.; Ruiz, P.; Le, T.H. MYH9 E1841K Mutation Augments Proteinuria and Podocyte Injury and Migration. J. Am. Soc. Nephrol. 2018, 29, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Cooke, J.N.; Bostrom, M.A.; Hicks, P.J.; Ng, M.C.; Hellwege, J.N.; Comeau, M.E.; Divers, J.; Langefeld, C.D.; Freedman, B.I.; Bowden, D.W. Polymorphisms in MYH9 are associated with diabetic nephropathy in European Americans. Nephrol. Dial. Transplant. 2012, 27, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Freedman, B.I.; Hicks, P.J.; Bostrom, M.A.; Comeau, M.E.; Divers, J.; Bleyer, A.J.; Kopp, J.B.; Winkler, C.A.; Nelson, G.W.; Langefeld, C.D.; et al. Non-muscle myosin heavy chain 9 gene MYH9 associations in African Americans with clinically diagnosed type 2 diabetes mellitus-associated ESRD. Nephrol. Dial. Transplant. 2009, 24, 3366–3371. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, R.G.; Cao, S.; Gao, Q.; Wendl, M.C.; Vo, N.S.; Reynolds, S.M.; Zhao, Y.; Climente-Gonzalez, H.; Chai, S.; Wang, F.; et al. Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Rep. 2018, 23, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Sharma, Y.; Miladi, M.; Dukare, S.; Boulay, K.; Caudron-Herger, M.; Gross, M.; Backofen, R.; Diederichs, S. A pan-cancer analysis of synonymous mutations. Nat. Commun. 2019, 10, 2569. [Google Scholar] [CrossRef] [Green Version]
- Olinger, E.; Alawi, I.A.; Al Riyami, M.S.; Salmi, I.A.; Molinari, E.; Faqeih, E.A.; Al-Hamed, M.H.; Barroso-Gil, M.; Powell, L.; Al-Hussaini, A.A.; et al. A discarded synonymous variant in NPHP3 explains nephronophthisis and congenital hepatic fibrosis in several families. Hum. Mutat. 2021, 42, 1221–1228. [Google Scholar] [CrossRef]
- Gonzalez-Paredes, F.J.; Ramos-Trujillo, E.; Claverie-Martin, F. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease. Gene 2014, 546, 243–249. [Google Scholar] [CrossRef]
- Khadangi, F.; Torkamanzehi, A.; Kerachian, M.A. Identification of missense and synonymous variants in Iranian patients suffering from autosomal dominant polycystic kidney disease. BMC Nephrol. 2020, 21, 408. [Google Scholar] [CrossRef]
- Kopp, J.B.; Smith, M.W.; Nelson, G.W.; Johnson, R.C.; Freedman, B.I.; Bowden, D.W.; Oleksyk, T.; McKenzie, L.M.; Kajiyama, H.; Ahuja, T.S.; et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 2008, 40, 1175–1184. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.W.; Freedman, B.I.; Bowden, D.W.; Langefeld, C.D.; An, P.; Hicks, P.J.; Bostrom, M.A.; Johnson, R.C.; Kopp, J.B.; Winkler, C.A. Dense mapping of MYH9 localizes the strongest kidney disease associations to the region of introns 13 to 15. Hum. Mol. Genet. 2010, 19, 1805–1815. [Google Scholar] [CrossRef] [Green Version]
- McDonough, C.W.; Hicks, P.J.; Lu, L.; Langefeld, C.D.; Freedman, B.I.; Bowden, D.W. The influence of carnosinase gene polymorphisms on diabetic nephropathy risk in African-Americans. Hum. Genet. 2009, 126, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Tziastoudi, M.; Stefanidis, I.; Zintzaras, E. The genetic map of diabetic nephropathy: Evidence from a systematic review and meta-analysis of genetic association studies. Clin. Kidney J. 2020, 13, 768–781. [Google Scholar] [CrossRef]
- Everaert, I.; He, J.; Hanssens, M.; Stautemas, J.; Bakker, K.; Albrecht, T.; Zhang, S.; Van der Stede, T.; Vanhove, K.; Hoetker, D.; et al. Carnosinase-1 overexpression, but not aerobic exercise training, affects the development of diabetic nephropathy in BTBR ob/ob mice. Am. J. Physiol.-Renal Physiol. 2020, 318, F1030–F1040. [Google Scholar] [CrossRef] [PubMed]
- Brennan, E.P.; Morine, M.J.; Walsh, D.W.; Roxburgh, S.A.; Lindenmeyer, M.T.; Brazil, D.P.; Gaora, P.O.; Roche, H.M.; Sadlier, D.M.; Cohen, C.D.; et al. Next-generation sequencing identifies TGF-beta1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. Biochim. Biophys. Acta 2012, 1822, 589–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambo, F.; Malovini, A.; Sandholm, N.; Stavarachi, M.; Forsblom, C.; Makinen, V.P.; Harjutsalo, V.; Lithovius, R.; Gordin, D.; Parkkonen, M.; et al. Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification. Diabetologia 2014, 57, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.; Lai, C.Q.; Parnell, L.D.; Lee, Y.C.; Ordovas, J.M. A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genom. 2011, 12, 504. [Google Scholar] [CrossRef] [Green Version]
- Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed. Res. Int. 2021, 2021, 1497449. [Google Scholar] [CrossRef]
- De Borst, M.H.; Gu, H.F. Editorial: Genetics of Kidney Diseases. Front. Genet. 2020, 11, 305. [Google Scholar] [CrossRef]
- Lazaro-Guevara, J.; Fierro-Morales, J.; Wright, A.H.; Gunville, R.; Simeone, C.; Frodsham, S.G.; Pezzolesi, M.H.; Zaffino, C.A.; Al-Rabadi, L.; Ramkumar, N.; et al. Targeted Next-Generation Sequencing Identifies Pathogenic Variants in Diabetic Kidney Disease. Am. J. Nephrol. 2021, 52, 239–249. [Google Scholar] [CrossRef]
Controls | DKD | DKD-ESRD | |
---|---|---|---|
N | 50 | 50 | 50 |
Age (years) | 70 (7) | 69 (13) | 70 (16) |
Sex | |||
Women | 16 (32.0) | 15 (30.0) | 13 (26.0) |
Men | 34 (68.0) | 35 (70.0) | 37 (74.0) |
Weight (kg) | 78 (18.45) | 82.5 (20.25) | 72.5 (23.5) |
Proteinuria (mg/24 h) | 92.4 (135.3) | 390 (888.71) | |
Albuminuria (mg/24 h) | |||
<30 | 28 (59.6) | 10 (21.7) | |
30–300 | 13 (27.7) | 18 (39.1) | |
>300 | 6 (12.8) | 18 (391) | |
Serum creatinine (mg/mL) | 0.72 (0.38) | 0.61 (0.30) | |
Albumin/Creatinine (mg/g) | 13.16 (80.96) | 168.17 (594.99) | |
Creatinine clearance (mL/min) | 89.42 (67.97) | 57.18 (38.60) | |
eGFR (mL/min) | 69.2 (62.5) | 43.7 (33.7) | |
Glucose (mg/dL) | 101 (13) | 137 (61) | 178 (123) |
HbA1c (%) | 6 (1.3) | 7.1 (1.3) | 7.6 (1.5) |
Smoking | |||
No | 31(62.0) | 16 (32.0) | 24 (48.0) |
Yes (including former smokers) | 19 (38.0) | 34 (68.0) | 26 (52.0) |
Systolic blood pressure (mmHg) | 133.0 ± 28.9 | 144.1 ± 22 | 140.1 ± 28 |
Diastolic blood pressure (mmHg) | 70.9 ± 11.2 | 79.0 ± 11 | 69 ± 12.1 |
Pulse pressure (mmHg) | 62.1 ± 22.2 | 65.0 ± 19.1 | 71.1 ± 19.9 |
Hypertension | |||
No | 11 (22.0) | 12 (24.0) | 2 (4.0) |
Yes | 39 (78.0) | 38 (76.0) | 48 (96.0) |
Hyperlipidemia | |||
No | 35 (70.0) | 36 (72.0) | 21 (42.0) |
Yes | 15 (30.0) | 14 (28.0) | 29 (58.0) |
Evolution of DM (years) a | |||
0–10 | - | 11 (22.4) | 4 (8.2) |
10–20 | - | 21 (42.9) | 22 (44.9) |
>20 | - | 17 (34.7) | 23 (46.9) |
Chromosome | Position | Gene | Reference Allele | Alternate Allele | rs | Highest Population MAF | OR | CI | p-Value |
---|---|---|---|---|---|---|---|---|---|
Controls vs. DKD groups | |||||||||
11 | 77300435 | AQP11 | T | A | 4.33 | (2.21–8.57) | 3.82 × 10−6 | ||
1 | 22206942 | HSPG2 | G | G | rs1874793 | 0.035 | 0.05 | (0.007–0.4) | 1.5 × 10−4 |
4 | 103538411 | NFKB1 | T | A | 0.06 | (0.007–0.44) | 3.1 × 10−4 | ||
1 | 230841687 | AGT | T | C | rs7080 | 0.14 | 0.17 | (0.05–0.51) | 7.7 × 10−4 |
18 | 72252086 | CNDP1 | A | C | rs4891564 | 0.06 | 0.11 | (0.02–0.48) | 7.9 × 10−4 |
1 | 186946912 | PLA2G4A | G | A | rs2307198 | 0.05 | 0.11 | (0.01–0.48) | 7.9 × 10−4 |
4 | 103538177 | NFKB1 | A | T | 13.5 | (1.72–105.93) | 0.002 | ||
16 | 24230479 | PRKCB | A | T | 0.07 | (0.009–0.58) | 0.002 | ||
9 | 130889841 | PTGES2 | A | T | 0.16 | (0.04–0.57) | 0.003 | ||
4 | 175598334 | GLRA3 | T | C | rs6812439 | 0.12 | 0.13 | (0.03–0.57) | 0.003 |
9 | 130883511 | PTGES2 | C | T | rs2040004 | 0.33 | 0.13 | (0.03–0.57) | 0.003 |
9 | 130890281 | PTGES2 | C | G | rs6478820 | 0.16 | 0.13 | (0.03–0.57) | 0.003 |
22 | 36691607 | MYH9 | A | C | rs710181 | 0.06 | 0.22 | (0.08–0.63) | 0.004 |
11 | 102713447 | MMP3 | G | C | rs41380244 | 0.14 | 12.23 | (1.54–96.68) | 0.005 |
15 | 93587438 | RGMA | A | G | rs3752103 | 0.49 | 0.18 | (0.05–0.62) | 0.005 |
7 | 29394249 | CHN2 | G | T | 7.25 | (1.59–33.02) | 0.005 | ||
18 | 72188371 | CNDP2 | A | G | rs890334 | 0.22 | 0.19 | (0.05–0.68) | 0.009 |
2 | 174820817 | SP3 | A | G | 5.26 | (1.46–18.94) | 0.009 | ||
4 | 77818132 | SOWAHB | G | C | rs13140552 | 0.16 | 11.00 | (1.38–87.64) | 0.009 |
4 | 175565010 | GLRA3 | A | C | 9.79 | (1.22–78.81) | 0.018 | ||
15 | 93588336 | RGMA | A | C | rs4238485 | 3.62 | (1.27–10.3) | 0.019 | |
7 | 29513367 | CHN2 | T | C | rs1059185 | 0.49 | 2.15 | (1.14–4.08) | 0.04 |
DKD vs. DKD with ESRD groups | |||||||||
11 | 102795585 | MMP1 | T | C | rs470558 | 0.21 | 0.15 | (0.03–0.69) | 0.01 |
15 | 93044800 | RGMA | T | C | rs1969589 | 0.48 | 0.08 | (0.01–0.64) | 0.005 |
Renal function and damage * | |||||||||
1 | 186672494 | PTGS2 | A | C | rs2853805 | 5.53 | (1.55–9.2) | 0.019 | |
9 | 35161846 | UNC13B | T | G | 11.00 | (1.23–83.40) | 0.004 | ||
15 | 94946287 | MCTP2 | C | A | rs16949097 | 0.22 | 8.70 | (1.33–7.45) | 0.013 |
15 | 93588309 | RGMA | C | G | rs62021480 | 0.27 | 5.91 | (1.13–25.57) | 0.026 |
Controls | DKD | |
---|---|---|
N | 506 | 318 |
Age (years) | 57 (17) | 63 (18) |
Sex | ||
Women | 232 (45.8) | 110 (34.6) |
Men | 274 (54.2) | 208 (65.4) |
Weight (kg) | 76 (20.3) | 78.3 (20.3) |
HbA1c (%) | 5.6 (0.9) | 7.1 (1.8) |
Proteinuria (mg/24 h) | 95.1 (140.1) | 1612 (2872.5) |
Glucose (mg/dL) | 102 (20) | 139.5 (80) |
Albumin/Creatinine (mg/g) | 7.2(45.1) | 186.4 (841.6) |
eGFR (mL/min) | 89.2 (21.8) | 29.4 (21.2) |
Smoking | ||
No | 195 (38.5) | 123 (38.7) |
Yes (including former smokers) | 311 (61.5) | 195 (61.3) |
Systolic blood pressure (mmHg) | 133.7 ± 17.8 | 144.9 ± 24.0 |
Diastolic blood pressure (mmHg) | 80.04 ± 9.7 | 79.2 ± 11.8 |
Pulse pressure (mmHg) | 53.6 ± 13.2 | 71.5 ± 20.1 |
Hypertension | ||
No | 325 (64.2) | 4 (1.3) |
Yes | 181 (35.8) | 314 (98.7) |
Hyperlipidemia | ||
No | 327 (64.6) | 58 (18.2) |
Yes | 179 (35.4) | 260 (81.8) |
SNP | Gene | Genotype | Control | % | DKD | % | OR | CI | p-Value |
---|---|---|---|---|---|---|---|---|---|
rs13140552 | SOWAHB | G/G-C/G | 498 | 99.0 | 318 | 100.0 | Ref. | 0.044 | |
C/C | 5 | 1.0 | 0 | 0 | - | ||||
rs4891564 | CNDP1 | C/C | 504 | 100.0 | 316 | 99.4 | Ref. | 0.023 | |
A/C | 0 | 0 | 2 | 0.6 | - | ||||
rs710181 | MYH9 | C/C | 464 | 91.9 | 303 | 95.3 | Ref. | 0.033 | |
A/C-A/A | 41 | 8.1 | 15 | 4.7 | 0.52 | (0.28–0.97) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mota-Zamorano, S.; González, L.M.; Robles, N.R.; Valdivielso, J.M.; Cancho, B.; López-Gómez, J.; Gervasini, G. A Custom Target Next-Generation Sequencing 70-Gene Panel and Replication Study to Identify Genetic Markers of Diabetic Kidney Disease. Genes 2021, 12, 1992. https://doi.org/10.3390/genes12121992
Mota-Zamorano S, González LM, Robles NR, Valdivielso JM, Cancho B, López-Gómez J, Gervasini G. A Custom Target Next-Generation Sequencing 70-Gene Panel and Replication Study to Identify Genetic Markers of Diabetic Kidney Disease. Genes. 2021; 12(12):1992. https://doi.org/10.3390/genes12121992
Chicago/Turabian StyleMota-Zamorano, Sonia, Luz María González, Nicolás Roberto Robles, José Manuel Valdivielso, Bárbara Cancho, Juan López-Gómez, and Guillermo Gervasini. 2021. "A Custom Target Next-Generation Sequencing 70-Gene Panel and Replication Study to Identify Genetic Markers of Diabetic Kidney Disease" Genes 12, no. 12: 1992. https://doi.org/10.3390/genes12121992
APA StyleMota-Zamorano, S., González, L. M., Robles, N. R., Valdivielso, J. M., Cancho, B., López-Gómez, J., & Gervasini, G. (2021). A Custom Target Next-Generation Sequencing 70-Gene Panel and Replication Study to Identify Genetic Markers of Diabetic Kidney Disease. Genes, 12(12), 1992. https://doi.org/10.3390/genes12121992