VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage
Abstract
:1. Introduction
2. Results
2.1. BoC Can Be Used Along with DoC to Detect Rare HDs
2.1.1. Results Comparison with 1KGP Data
2.1.2. Detection of Synthetic HDs
2.2. Automated SNV/Indel and CNV Calling
Experimental Validation of Detected HDs
3. Methods
3.1. NGS Procedures
3.1.1. Calling Homozygous Deletions Leveraging BoC
3.1.2. KGP WES Dataset
3.1.3. Synthetic Homozygous Deletion Detection
3.1.4. Recall, Precision, and Specificity Scores
3.2. Analysis of the VRCIRD Cohort
3.2.1. Automated CNV Detection Workflow
3.2.2. Homozygous Deletions Filtering for Patients
3.2.3. Polymerase Chain Reaction (PCR) and Deletion Breakpoint Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boycott, K.M.; Vanstone, M.R.; Bulman, D.E.; MacKenzie, A.E. Rare-disease genetics in the era of next-generation sequencing: Discovery to translation. Nat. Rev. Genet. 2013, 14, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.F.; FitzPatrick, D.R.; Firth, H.V. Paediatric genomics: Diagnosing rare disease in children. Nat. Rev. Genet. 2018, 19, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Demos, M.; Guella, I.; DeGuzman, C.; McKenzie, M.B.; Buerki, S.E.; Evans, D.M.; Toyota, E.B.; Boelman, C.; Huh, L.L.; Datta, A.; et al. Diagnostic Yield and Treatment Impact of Targeted Exome Sequencing in Early-Onset Epilepsy. Front. Neurol. 2019, 10, 434. [Google Scholar] [CrossRef]
- Hartley, T.; Lemire, G.; Kernohan, K.D.; Howley, H.E.; Adams, D.R.; Boycott, K.M. New Diagnostic Approaches for Undiagnosed Rare Genetic Diseases. Annu. Rev. Genom. Hum. Genet. 2020, 21, 351–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shashi, V.; McConkie-Rosell, A.; Rosell, B.; Schoch, K.; Vellore, K.; McDonald, M.; Jiang, Y.-H.; Xie, P.; Need, A.; Goldstein, D.B.; et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet. Med. Off. J. Am. Coll. Med. Genet. 2014, 16, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W.; et al. Global variation in copy number in the human genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, B.; Wang, L.; Liu, P.; Shaw, C.; Dai, H.; Cooper, L.; Zhu, W.; Anderson, S.A.; Meng, L.; Wang, X.; et al. CNVs cause autosomal recessive genetic diseases with or without involvement of SNV/indels. Genet. Med. 2020, 22, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Vasson, A.; Leroux, C.; Orhant, L.; Boimard, M.; Toussaint, A.; Leroy, C.; Commere, V.; Ghiotti, T.; Deburgrave, N.; Saillour, Y.; et al. Custom oligonucleotide array-based CGH: A reliable diagnostic tool for detection of exonic copy-number changes in multiple targeted genes. Eur. J. Hum. Genet. 2013, 21, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Monroe, G.R.; Frederix, G.W.; Savelberg, S.M.; de Vries, T.I.; Duran, K.J.; van der Smagt, J.J.; Terhal, P.A.; van Hasselt, P.M.; Kroes, H.Y.; Verhoeven-Duif, N.M.; et al. Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. Genet. Med. Off. J. Am. Coll. Med. Genet. 2016, 18, 949–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelieveld, S.H.; Veltman, J.A.; Gilissen, C. Novel bioinformatic developments for exome sequencing. Hum. Genet. 2016, 135, 603. [Google Scholar] [CrossRef] [Green Version]
- Stark, Z.; Tan, T.Y.; Chong, B.; Brett, G.R.; Yap, P.; Walsh, M.; Yeung, A.; Peters, H.; Mordaunt, D.; Cowie, S.; et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet. Med. 2016, 18, 1090–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfundt, R.; del Rosario, M.; Vissers, L.E.; Kwint, M.P.; Janssen, I.M.; de Leeuw, N.; Yntema, H.G.; Nelen, M.R.; Lugtenberg, D.; Kamsteeg, E.-J.; et al. Detection of clinically relevant copy-number variants by exome sequencing in a large cohort of genetic disorders. Genet. Med. 2017, 19, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromer, M.; Purcell, S.M. Using XHMM Software to Detect Copy Number Variation in Whole-Exome Sequencing Data. Curr. Protoc. Hum. Genet. 2014, 81, 7.23.1–7.23.21. [Google Scholar] [CrossRef] [Green Version]
- Krumm, N.; Sudmant, P.H.; Ko, A.; O’Roak, B.J.; Malig, M.; Coe, B.P.; NHLBI Exome Sequencing Project; Quinlan, A.R.; Nickerson, D.A.; Eichler, E.E. Copy number variation detection and genotyping from exome sequence data. Genome Res. 2012, 22, 1525–1532. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lupat, R.; Amarasinghe, K.C.; Thompson, E.R.; Doyle, M.A.; Ryland, G.L.; Tothill, R.W.; Halgamuge, S.K.; Campbell, I.G.; Gorringe, K.L. CONTRA: Copy number analysis for targeted resequencing. Bioinformatics 2012, 28, 1307–1313. [Google Scholar] [CrossRef] [Green Version]
- Plagnol, V.; Curtis, J.; Epstein, M.; Mok, K.Y.; Stebbings, E.; Grigoriadou, S.; Wood, N.W.; Hambleton, S.; Burns, S.O.; Thrasher, A.J.; et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 2012, 28, 2747–2754. [Google Scholar] [CrossRef] [Green Version]
- Auer, P.L.; Reiner, A.P.; Wang, G.; Kang, H.M.; Abecasis, G.R.; Altshuler, D.; Bamshad, M.J.; Nickerson, D.A.; Tracy, R.P.; Rich, S.S.; et al. Guidelines for Large-Scale Sequence-Based Complex Trait Association Studies: Lessons Learned from the NHLBI Exome Sequencing Project. Am. J. Hum. Genet. 2016, 99, 791. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Sheng, Q.; Samuels, D.C.; Lehmann, B.; Bauer, J.A.; Pietenpol, J.; Shyr, Y. Comparative Study of Exome Copy Number Variation Estimation Tools Using Array Comparative Genomic Hybridization as Control. BioMed Res. Int. 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Hong, C.S.; Singh, L.N.; Mullikin, J.C.; Biesecker, L.G. Assessing the reproducibility of exome copy number variations predictions. Genome Med. 2016, 8, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Chen, D.; Wang, G.-L.; Zhang, V.W.; Wong, L.-J.C. Improved molecular diagnosis by the detection of exonic deletions with target gene capture and deep sequencing. Genet. Med. 2015, 17, 99. [Google Scholar] [CrossRef] [Green Version]
- Samarakoon, P.S.; Sorte, H.S.; Stray-Pedersen, A.; Rødningen, O.K.; Rognes, T.; Lyle, R. cnvScan: A CNV screening and annotation tool to improve the clinical utility of computational CNV prediction from exome sequencing data. BMC Genom. 2016, 17, 51. [Google Scholar] [CrossRef] [Green Version]
- Tan, R.; Wang, Y.; Kleinstein, S.E.; Liu, Y.; Zhu, X.; Guo, H.; Jiang, Q.; Allen, A.S.; Zhu, M. An Evaluation of Copy Number Variation Detection Tools from Whole-Exome Sequencing Data. Hum. Mutat. 2014, 35, 899–907. [Google Scholar] [CrossRef]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Cabrera, J.M.; del Valle, J.; Castellanos, E.; Feliubadaló, L.; Pineda, M.; Brunet, J.; Serra, E.; Capellà, G.; Lázaro, C.; Gel, B. Evaluation of CNV detection tools for NGS panel data in genetic diagnostics. Eur. J. Hum. Genet. 2020, 28, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Zhang, C.; Yu, T.; Li, N.; Hu, X.; Wang, X.; Wang, J.; Shen, Y. Evaluation of three read-depth based CNV detection tools using whole-exome sequencing data. Mol. Cytogenet. 2017, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Sadedin, S.P.; Ellis, J.A.; Masters, S.L.; Oshlack, A. Ximmer: A system for improving accuracy and consistency of CNV calling from exome data. GigaScience 2018, 7, giy112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, T.; Liu, X.; Wu, T.-J.; Hu, J.; Sedlazeck, F.J.; White, S.; Schaid, D.; de Andrade, M.; Jarvik, G.P.; Crosslin, D.; et al. Atlas-CNV: A validated approach to call single-exon CNVs in the eMERGESeq gene panel. Genet. Med. 2019, 21, 2135–2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, A.; Mahamdallie, S.; Ruark, E.; Seal, S.; Ramsay, E.; Clarke, M.; Uddin, I.; Wylie, H.; Strydom, A.; Lunter, G.; et al. Accurate clinical detection of exon copy number variants in a targeted NGS panel using DECoN. Wellcome Open Res. 2016, 1, 20. [Google Scholar] [CrossRef] [Green Version]
- Gambin, T.; Akdemir, Z.C.; Yuan, B.; Gu, S.; Chiang, T.; Carvalho, M.B.; Shaw, C.; Jhangiani, S.; Boone, P.M.; Eldomery, M.K.; et al. Homozygous and hemizygous CNV detection from exome sequencing data in a Mendelian disease cohort. Nucleic Acids Res. 2017, 45, 1633–1648. [Google Scholar] [CrossRef]
- Johansson, L.F.; van Dijk, F.; de Boer, E.N.; van Dijk-Bos, K.K.; Jongbloed, J.D.H.; van der Hout, A.H.; Westers, H.; Sinke, R.J.; Swertz, M.A.; Sijmons, R.H.; et al. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data. Hum. Mutat. 2016, 37, 457–464. [Google Scholar] [CrossRef]
- Musacchia, F.; Ciolfi, A.; Mutarelli, M.; Bruselles, A.; Castello, R.; Pinelli, M.; Basu, S.; Banfi, S.; Casari, G.; Tartaglia, M.; et al. VarGenius executes cohort-level DNA-seq variant calling and annotation and allows to manage the resulting data through a PostgreSQL database. BMC Bioinform. 2018, 19, 477. [Google Scholar] [CrossRef]
- Ellingford, J.M.; Campbell, C.; Barton, S.; Bhaskar, S.; Gupta, S.; Taylor, R.L.; Sergouniotis, P.I.; Horn, B.; Lamb, J.A.; Michaelides, M.; et al. Validation of copy number variation analysis for next-generation sequencing diagnostics. Eur. J. Hum. Genet. 2017, 25, 719–724. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Wang, Q.; Wang, Q.; Jia, P.; Zhao, Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: Features and perspectives. BMC Bioinform. 2013, 14, S1. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Juhos, S.; Larsson, M.; Olason, P.I.; Martin, M.; Eisfeldt, J.; DiLorenzo, S.; Sandgren, J.; Díaz De Ståhl, T.; Ewels, P.; et al. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Research 2020, 9, 63. [Google Scholar] [CrossRef]
- Van de Sompele, S.; Smith, C.; Karali, M.; Corton, M.; Van Schil, K.; Peelman, F.; Cherry, T.; Rosseel, T.; Verdin, H.; Derolez, J.; et al. Biallelic sequence and structural variants in RAX2 are a novel cause for autosomal recessive inherited retinal disease. Genet. Med. Off. J. Am. Coll. Med Genet. 2019, 21, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. In Current Protocols in Bioinformatics; John Wiley & Sons, Inc.: New York, NY, USA, 2013; Volume 43, pp. 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Demeulemeester, J.; Wedge, D.C.; Vollan, H.K.M.; Pitt, J.J.; Russnes, H.G.; Pandey, B.P.; Nilsen, G.; Nord, S.; Bignell, G.R.; et al. Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors. Nat. Commun. 2017, 8, 1–14. [Google Scholar] [CrossRef]
- Cox, C.; Bignell, G.; Greenman, C.; Stabenau, A.; Warren, W.; Stephens, P.; Davies, H.; Watt, S.; Teague, J.; Edkins, S.; et al. A survey of homozygous deletions in human cancer genomes. Proc. Natl. Acad. Sci. USA 2005, 102, 4542–4547. [Google Scholar] [CrossRef] [Green Version]
- Lupski, J.R.; Belmont, J.W.; Boerwinkle, E.; Gibbs, R.A. Clan genomics and the complex architecture of human disease. Cell 2011, 147, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Valduga, M.; Philippe, C.; Lambert, L.; Bach-Segura, P.; Schmitt, E.; Masutti, J.P.; François, B.; Pinaud, P.; Vibert, M.; Jonveaux, P. WWOX and severe autosomal recessive epileptic encephalopathy: First case in the prenatal period. J. Hum. Genet. 2015, 60, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.E.; Myers, R.M. GG17CH05-Levy Advancements in Next-Generation Sequencing. Annu. Rev. Genom. Hum. Genet. 2016, 17, 95–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samarakoon, P.; Sorte, H.; Kristiansen, B.; Skodje, T.; Sheng, Y.; Tjønnfjord, G.E.; Stadheim, B.; Stray-Pedersen, A.; Rødningen, O.; Lyle, R. Identification of copy number variants from exome sequence data. BMC Genom. 2014, 15, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zare, F.; Dow, M.; Monteleone, N.; Hosny, A.; Nabavi, S. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data. BMC Bioinform. 2017, 18, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Algorithm | TotalPutativeHZDel | TP | TN | FN | FP | Recall | Specificity | Precision | NewTP |
---|---|---|---|---|---|---|---|---|---|
ExomeDepth | 274 | 1 | 1 | 3 | 273 | 0.25 | 0.0036 | 0.0036 | 2 |
VarGenius-HZD | 51 | 3 | 1 | 1 | 48 | 0.75 | 0.0204 | 0.0588 | 2 |
HMZDelFinder | 10 | 1 | 1 | 3 | 9 | 0.25 | 0.10 | 0.10 | 1 |
DECoN | 267 | 1 | 1 | 3 | 266 | 0.25 | 0.0037 | 0.0037 | 1 |
Algorithm | TotalCalls | TotalFiltered | TP | TN | FP | FN | Recall | Specificity | Precision |
---|---|---|---|---|---|---|---|---|---|
HMZDelFinder | NA | 4 | 4 | 0 | 0 | 1 | 0.8 | 0 | 1 |
VarGenius-HZD | 4201 | 6 | 5 | 0 | 1 | 0 | 1 | 0 | 0.83 |
DECoN | 38234 | 45 | 0 | 0 | 45 | 5 | 0 | 0 | 0 |
ExomeDepth | 3949 | 3 | 0 | 0 | 3 | 5 | 0 | 0 | 0 |
Software | SNV/Indel Calling | CNV Calling | Scalability | Automated Dataset Creation |
---|---|---|---|---|
bcbio | yes | yes | yes | no |
Nf-sarek | yes | yes | yes | no |
Hpexome | yes | no | yes | no |
HemoMIPs | yes | no | yes | no |
Swift/T | yes | no | yes | no |
Sample | Gene | Region | XHMM | ExomeDepth (BF) | VarGenius-HZD | HMZDelFinder |
---|---|---|---|---|---|---|
ID_A739 | RAX2 | 19:3772155-3772224 | NO | 7.4 | YES | YES |
CREv1_A392 | RAX2 | 19:3771519-3772224 | NO | 11 | YES | YES |
CREv1_A348 | RP2 | X:46719422-46719537 | NO | 7.8 | YES | YES |
CREv1_ARRP129 | RP2 | X:46719424-46719537 | NO | 9 | YES | YES |
ID_A860 | RPGR | X:38186587-38186793 | NO | 9 | YES | NO |
Platform | CREv1 | CCP | ID | Total | Solved Cases | Examined |
---|---|---|---|---|---|---|
NextSeq500 | 14 | 51 | 123 | 188 | 124 | 64 |
Sample | Chr | Start | End |
---|---|---|---|
NA06989 | 21 | 48063447 | 48063551 |
NA07347 | 21 | 27326904 | 27327003 |
NA12058 | 21 | 35091133 | 35091161 |
NA12748 | 21 | 10906904 | 10907040 |
NA12830 | 21 | 40188932 | 40189015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musacchia, F.; Karali, M.; Torella, A.; Laurie, S.; Policastro, V.; Pizzo, M.; Beltran, S.; Casari, G.; Nigro, V.; Banfi, S. VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage. Genes 2021, 12, 1979. https://doi.org/10.3390/genes12121979
Musacchia F, Karali M, Torella A, Laurie S, Policastro V, Pizzo M, Beltran S, Casari G, Nigro V, Banfi S. VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage. Genes. 2021; 12(12):1979. https://doi.org/10.3390/genes12121979
Chicago/Turabian StyleMusacchia, Francesco, Marianthi Karali, Annalaura Torella, Steve Laurie, Valeria Policastro, Mariateresa Pizzo, Sergi Beltran, Giorgio Casari, Vincenzo Nigro, and Sandro Banfi. 2021. "VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage" Genes 12, no. 12: 1979. https://doi.org/10.3390/genes12121979
APA StyleMusacchia, F., Karali, M., Torella, A., Laurie, S., Policastro, V., Pizzo, M., Beltran, S., Casari, G., Nigro, V., & Banfi, S. (2021). VarGenius-HZD Allows Accurate Detection of Rare Homozygous or Hemizygous Deletions in Targeted Sequencing Leveraging Breadth of Coverage. Genes, 12(12), 1979. https://doi.org/10.3390/genes12121979