Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery
Abstract
:1. Introduction
2. Methods
2.1. Patient Cohorts and Ethics Approval
2.2. RNA-Seq Data Analysis
2.3. Gene Ontology Analysis
2.4. Custom Decision Tree Analysis
2.5. Clinical Correlation Analysis and Protein–Protein Interaction Network
2.6. Experimental Validation by qRT-PCR
3. Results
3.1. Identification of Set of DEGs Able to Clusterize Healthy/Sick Sample in DCM
3.2. Improved Target Genes Selection by an Original Machine Learning Approach
3.3. Validation of Potential DCM-Related Expression Targets
3.4. Results Integration Using PPI Network Analysis
3.5. GO Analyses for a More Whole Biological Picture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gronda, E.; Sacchi, S.; Benincasa, G.; Vanoli, E.; Napoli, C. Unresolved issues in left ventricular postischemic remodeling and progression to heart failure. J. Cardiovasc. Med. 2019, 20, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Gronda, E.; Vanoli, E.; Sacchi, S.; Grassi, G.; Ambrosio, G.; Napoli, C. Risk of heart failure progression in patients with reduced ejection fraction: Mechanisms and therapeutic options. Heart Fail. Rev. 2020, 25, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, R.G.; Semsarian, C.; Macdonald, P. Dilated cardiomyopathy. Lancet 2017, 390, 400–414. [Google Scholar] [CrossRef]
- Cannatà, A.; Fabris, E.; Merlo, M.; Artico, J.; Gentile, P.; Pio Loco, C.; Ballaben, A.; Ramani, F.; Barbati, G.; Sinagra, G. Sex Differences in the Long-term Prognosis of Dilated Cardiomyopathy. Can. J. Cardiol. 2020, 36, 37–44. [Google Scholar] [CrossRef]
- Chien, K.R. Genomic circuits and the integrative biology of cardiac diseases. Nature 2000, 407, 227–232. [Google Scholar] [CrossRef]
- Ishii, R.; Steve Fan, C.P.; Mertens, L.; Manlhiot, C.; Friedberg, M.K. Longitudinal Prediction of Transplant-Free Survival by Echocardiography in Pediatric Dilated Cardiomyopathy. Can. J. Cardiol. 2020, 37, 867–876. [Google Scholar] [CrossRef]
- Infante, T.; Forte, E.; Schiano, C.; Punzo, B.; Cademartiri, F.; Cavaliere, C.; Salvatore, M.; Napoli, C. Evidence of association of circulating epigenetic-sensitive biomarkers with suspected coronary heart disease evaluated by Cardiac Computed Tomography. PLoS ONE 2019, 14, e0210909. [Google Scholar] [CrossRef]
- Sabia, C.; Picascia, A.; Grimaldi, V.; Amarelli, C.; Maiello, C.; Napoli, C. The epigenetic promise to improve prognosis of heart failure and heart transplantation. Transpl. Rev. 2017, 31, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ounzain, S.; Micheletti, R.; Beckmann, T.; Schroen, B.; Alexanian, M.; Pezzuto, I.; Crippa, S.; Nemir, M.; Sarre, A.; Johnson, R.; et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur. Heart J. 2015, 36, 353–368. [Google Scholar] [CrossRef]
- Mooney, M.; Bond, J.; Monks, N.; Eugster, E.; Cherba, D.; Berlinski, P.; Kamerling, S.; Marotti, K.; Simpson, H.; Rusk, T.; et al. Comparative RNA-seq and microarray analysis of gene expression changes in B-cell lymphomas of Canisfamiliaris. PLoS ONE 2013, 8, e61088. [Google Scholar] [CrossRef] [Green Version]
- Schiano, C.; Costa, V.; Aprile, M.; Grimaldi, V.; Maiello, C.; Esposito, R.; Soricelli, A.; Colantuoni, V.; Donatelli, F.; Ciccodicola, A.; et al. Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing. Cardioliol. J. 2017, 24, 539–553. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xi, Y.; Sung, S.; Qiao, H. RNA-seq assistant: Machine learning based methods to identify more transcriptional regulated genes. BMC Genom. 2018, 19, 546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiano, C.; Benincasa, G.; Infante, T.; Franzese, M.; Castaldo, R.; Fiorito, C.; Mansueto, G.; Grimaldi, V.; Della Valle, G.; Fatone, G.; et al. Integrated analysis of DNA methylation profile of HLA-G gene and imaging in coronary heart disease: Pilot study. PLoS ONE 2020, 15, e0236951. [Google Scholar] [CrossRef]
- Schiano, C.; Rienzo, M.; Casamassimi, A.; Soricelli, A.; Napoli, C. Splicing regulators in endothelial cell differentiation. J. Cardiovasc. Med. 2017, 18, 742–749. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, R.; Sullivan, R.D.; Fan, T.M.; Houng, A.K.; Mehta, R.M.; Reed, G.L.; Gladysheva, I.P. Cardiac-Specific Overexpression of Catalytically Inactive Corin Reduces Edema, Contractile Dysfunction, and Death in Mice with Dilated Cardiomyopathy. Int. J. Mol. Sci. 2019, 21, 203. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Zhang, H.; He, L.; Huang, X.; Li, Y.; Pu, W.; Yu, W.; Zhang, L.; Cai, D.; Lui, K.O.; et al. Genetic Fate Mapping Defines the Vascular Potential of Endocardial Cells in the Adult Heart. Circ. Res. 2018, 122, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Wang, S.; Qu, J.; Zheng, J.; Jiang, W.; Lin, Z.; Zhang, S. miR-424 promotes cardiac ischemia/reperfusion injury by direct targeting of CRISPLD2 and regulating cardiomyocyte pyroptosis. Int. J. Clin. Exp. Pathol. 2018, 11, 3222–3235. [Google Scholar]
- Guo, S.; Zhou, K.; Yuan, Q.; Su, L.; Liu, Y.; Ji, X.; Gu, X.; Guo, X.; Xing, J. An innovative data analysis strategy for accurate next-generation sequencing detection of tumor mitochondrial DNA mutations. Mol. Ther. Nucleic Acids 2020, 23, 232–243. [Google Scholar] [CrossRef]
- Zierz, C.M.; Baty, K.; Blakely, E.L.; Hopton, S.; Falkous, G.; Schaefer, A.M.; Hadjivassiliou, M.; Sarrigiannis, P.G.; Ng, Y.S.; Taylor, R.W. A Novel Pathogenic Variant in MT-CO2 Causes an Isolated Mitochondrial Complex IV Deficiency and Late-Onset Cerebellar Ataxia. J. Clin. Med. 2019, 8, 789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valinluck, V.; Tsai, H.H.; Rogstad, D.K.; Burdzy, A.; Bird, A.; Sowers, L.C. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004, 32, 4100–4108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, X.; Boyd-Kirkup, J.D.; McDermott, J.; Zhang, X.; Li, F.; Rong, B.; Zhang, R.; Miao, B.; Chen, P.; Cheng, H.; et al. The strand-biased mitochondrial DNA methylome and its regulation by DNMT3A. Genome Res. 2019, 29, 1622–1634. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Zhang, J.; Liu, H.; Liu, B.; Meng, L. Identification of nondiabetic heart failure-associated genes by bioinformatics approaches in patients with dilated ischemic cardiomyopathy. Exp. Ther. Med. 2016, 11, 2602–2608. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Xu, C.; Zhan, C.; Yang, Y.; Shi, L.; Wang, F.; Wang, C.; Xia, Y.; Yang, B.; Wu, G.; et al. Identification of NPPA variants associated with atrial fibrillation in a Chinese GeneID population. Clin. Chim. Acta 2010, 411, 481–485. [Google Scholar] [CrossRef]
- Gast, M.; Rauch, B.H.; Haghikia, A.; Nakagawa, S.; Haas, J.; Stroux, A.; Schmidt, D.; Schumann, P.; Weiss, S.; Jensen, L.; et al. Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovasc. Res. 2019, 115, 1886–1906. [Google Scholar] [CrossRef]
- Ahmed, A.S.I.; Dong, K.; Liu, J.; Wen, T.; Yu, L.; Xu, F.; Kang, X.; Osman, I.; Hu, G.; Bunting, K.M.; et al. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 2018, 115, E8660–E8667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, G.; Zhong, W.; Wu, F.; Wang, X.; Liu, L. Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie 2019, 165, 90–99. [Google Scholar] [CrossRef]
- Napoli, C.; Bontempo, P.; Palmieri, V.; Coscioni, E.; Maiello, C.; Donatelli, F.; Benincasa, G. Epigenetic Therapies for Heart Failure: Current Insights and Future Potential. Vasc. Health Risk Manag. 2021, 17, 247–254. [Google Scholar] [CrossRef]
Primer Name | Forward | Reverse | Product Size (bp) | RefSeq Accession Number |
---|---|---|---|---|
MYH6 | CTGGCCCTTCAACTACAGAA | TGTTCATCTCGATCTGCACG | 196 | NM_002471 |
NPPA | GCTTCCTCCTTTTACTGGCAT | CTTCTTCATTCGGCTCACTGA | 180 | NM_006172 |
MT-RNR1 | CCACGATCAAAAGGAACAAGC | CTCTTTACGCCGGCTTCTATT | 208 | NC_012920.1 |
NEAT1 | TGTGTAGGTGGGGAGTACTTT | CACTTAGACCCAAATCCCAGG | 179 | NR_131012 |
DCM | Controls | p Value | |
---|---|---|---|
(n = 11) | (n = 11) | ||
Age | 49.36 ± 16.10 | 30.64 ± 13.06 | 0.007 |
Sex (% number of male) | 73.00% | 63.60% | 0.690 |
BMI | 23.49 ± 3.12 | n.a. | - |
Hemoglobin (mg/mL) | 13.54 ± 1.89 | n.a. | - |
Hematocrit (%) | 39.30 ± 4.19 | n.a. | - |
Total cholesterol (mg/dL) | 143.30 ± 48.60 | n.a. | - |
Echocardiographic parameters | |||
Left ventricular end-diastolic diameter (mm) | 7.05 ± 0.72 | n.a. | - |
Left ventricular end-systolic diameter (mm) | 6.13 ± 0.81 | n.a. | - |
NYHA class, number of patients | |||
III | 8 | n.a. | - |
IV | 3 | n.a. | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiano, C.; Franzese, M.; Geraci, F.; Zanfardino, M.; Maiello, C.; Palmieri, V.; Soricelli, A.; Grimaldi, V.; Coscioni, E.; Salvatore, M.; et al. Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery. Genes 2021, 12, 1946. https://doi.org/10.3390/genes12121946
Schiano C, Franzese M, Geraci F, Zanfardino M, Maiello C, Palmieri V, Soricelli A, Grimaldi V, Coscioni E, Salvatore M, et al. Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery. Genes. 2021; 12(12):1946. https://doi.org/10.3390/genes12121946
Chicago/Turabian StyleSchiano, Concetta, Monica Franzese, Filippo Geraci, Mario Zanfardino, Ciro Maiello, Vittorio Palmieri, Andrea Soricelli, Vincenzo Grimaldi, Enrico Coscioni, Marco Salvatore, and et al. 2021. "Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery" Genes 12, no. 12: 1946. https://doi.org/10.3390/genes12121946
APA StyleSchiano, C., Franzese, M., Geraci, F., Zanfardino, M., Maiello, C., Palmieri, V., Soricelli, A., Grimaldi, V., Coscioni, E., Salvatore, M., & Napoli, C. (2021). Machine Learning and Bioinformatics Framework Integration to Potential Familial DCM-Related Markers Discovery. Genes, 12(12), 1946. https://doi.org/10.3390/genes12121946