Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxa Selection and Samples
2.2. Alignment
2.3. Phylogenetic Reconstructions
2.4. Base Mitochondrial Statistics Analysis
2.5. Convergent and Parallel Amino Acids Substitution Detection
2.6. Analysis of Selective Pressures
3. Results
3.1. Comparison of Base Nucleotide Composition and Gene Order
3.2. Selection Relaxation or Intensification
3.3. Estimation of Selective Pressures in Sites of Protein-Coding Genes
3.4. Search for Parallel and Convergent Amino Acid Substitutions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Begall, S.; Burda, H.; Schleich, C.E.; Begall, S. Subterranean Rodents: News from Underground; Springer: Berlin, Germany, 2007. [Google Scholar]
- Lacey, E.A. Life Underground: The Biology of Subterranean Rodents; Lacey, E.A., Patton, J.L., Cameron, G.N., Eds.; University of Chicago Press: Chicago, IL, USA, 2000. [Google Scholar]
- Chaline, J.; Brunet-Lecomte, P.; Montuire, S.; Viriot, L.; Courant, F. Anatomy of the Arvicoline Radiation (Rodentia): Palaeogeographical, Palaeoecological History and Evolutionary Data. Ann. Zool. Fennici. 1999, 36, 239–267. [Google Scholar]
- Martin, R.A. A Preliminary Diversity-Divergence Model for North American Arvicolid Rodents. Palaeobio. Palaeoenv. 2015, 95, 253–256. [Google Scholar] [CrossRef]
- Fejfar, O.; Heinrich, W.-D.; Kordos, L.; Maul, L.C. Microtoid Cricetids and the Early History of Arvicolids (Mammalia, Rodentia). Palaeontol. Electron. 2011, 14, 1–38. [Google Scholar]
- Martin, R.A. Biochronology of Latest Miocene through Pleistocene Arvicolid Rodents from the Central Great Plains of North America. Coloq. Paleontol. 2003, 1, 373–383. [Google Scholar]
- Swingle, J.K.; Foreman, E.D. Home Range Areas and Activity Patterns of Red Tree Voles (Arborimus longicaudus) in Western Oregon. Northwest. Sci. 2009, 83, 273–286. [Google Scholar] [CrossRef]
- Corn, P.S.; Bury, R.B. Distribution of the Voles Arborimus Longicaudus and Phenacomys Intermedius in the Central Oregon Cascades. J. Mammal. 1988, 69, 427–429. [Google Scholar] [CrossRef]
- Ognev, S.I. Zveri SSSR I Prilezhashhih Stran (The Mammals of the USSR and Adjacent Countries). Vol VII. Gryzuny (Rodentia); Publishing Academic: Cambridge, MA, USA, 1950; Volume 7. [Google Scholar]
- Avise, J.C. Mitochondrial DNA and the Evolutionary Genetics of Higher Animals. Philos. Trans. R. Soc. B 1986, 312, 325–342. [Google Scholar]
- Irwin, D.M.; Kocher, T.D.; Wilson, A.C. Evolution of the Cytochromeb Gene of Mammals. J. Mol. Evol. 1991, 32, 128–144. [Google Scholar] [CrossRef]
- Jaarola, M.; Martínková, N.; Gündüz, İ.; Brunhoff, C.; Zima, J.; Nadachowski, A.; Amori, G.; Bulatova, N.S.; Chondropoulos, B.; Fraguedakis-Tsolis, S.; et al. Molecular Phylogeny of the Speciose Vole Genus Microtus (Arvicolinae, Rodentia) Inferred from Mitochondrial DNA Sequences. Mol. Phylogenet. Evol. 2004, 33, 647–663. [Google Scholar] [CrossRef]
- Ruiz-Pesini, E.; Mishmar, D.; Brandon, M.; Procaccio, V.; Wallace, D.C. Effects of Purifying and Adaptive Selection on Regional Variation in Human MtDNA. Science 2004, 303, 223–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazin, E.; Glémin, S.; Galtier, N. Population Size does not Influence Mitochondrial Genetic Diversity in Animals. Science 2006, 312, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Andrews, T.D.; Jermiin, L.S.; Easteal, S. Accelerated Evolution of Cytochrome b in Simian Primates: Adaptive Evolution in Concert with Other Mitochondrial Proteins? J. Mol. Evol. 1998, 47, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Adkins, R.M.; Honeycutt, R.L. Evolution of the Primate Cytochrome c Oxidase Subunit II Gene. J. Mol. Evol. 1994, 38, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Dalziel, A.C.; Moyes, C.D.; Fredriksson, E.; Lougheed, S.C. Molecular Evolution of Cytochrome c Oxidase in High-Performance Fish (Teleostei: Scombroidei). J. Mol. Evol. 2006, 62, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca, R.R.; Johnson, W.E.; O’Brien, S.J.; Ramos, M.J.; Antunes, A. The Adaptive Evolution of the Mammalian Mitochondrial Genome. BMC Genom. 2008, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rocco, F.; Parisi, G.; Zambelli, A.; Vida-Rioja, L. Rapid Evolution of Cytochrome c Oxidase Subunit II in Camelids (Tylopoda, Camelidae). J. Bioenerg. Biomembr. 2006, 38, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Gao, W.; Gao, Y.; Tang, S.; Huang, Q.; Tan, X.; Chen, J.; Huang, T. Mitochondrial Genome Analysis of Ochotona Curzoniae and Implication of Cytochrome c Oxidase in Hypoxic Adaptation. Mitochondrion 2008, 8, 352–357. [Google Scholar] [CrossRef]
- Shen, Y.-Y.; Liang, L.; Zhu, Z.-H.; Zhou, W.-P.; Irwin, D.M.; Zhang, Y.-P. Adaptive Evolution of Energy Metabolism Genes and the Origin of Flight in Bats. Proc. Natl. Acad. Sci. USA 2010, 107, 8666–8671. [Google Scholar] [CrossRef] [Green Version]
- Tomasco, I.H.; Lessa, E.P. Two Mitochondrial Genes under Episodic Positive Selection in Subterranean Octodontoid Rodents. Gene 2014, 534, 371–378. [Google Scholar] [CrossRef]
- Goldman, N.; Yang, Z. A Codon-Based Model of Nucleotide Substitution for Protein-Coding DNA Sequences. Mol. Biol. Evol. 1994, 11, 725–736. [Google Scholar]
- Muse, S.V.; Gaut, B.S. A Likelihood Approach for Comparing Synonymous and Nonsynonymous Nucleotide Substitution Rates, with Application to the Chloroplast Genome. Mol. Biol. Evol. 1994, 11, 715–724. [Google Scholar]
- Anisimova, M.; Kosiol, C. Investigating Protein-Coding Sequence Evolution with Probabilistic Codon Substitution Models. Mol. Biol. Evol. 2009, 26, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Delport, W.; Scheffler, K.; Seoighe, C. Models of Coding Sequence Evolution. Brief. Bioinform. 2009, 10, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.P.; Suthers, R.A. The Physiology and Energetics of Bat Flight. J. Exp. Biol. 1972, 57, 317–335. [Google Scholar] [CrossRef]
- Maina, J.N. What It Takes to Fly: The Structural and Functional Respiratory Refinements in Birds and Bats. J. Exp. Biol. 2000, 203, 3045–3064. [Google Scholar] [CrossRef] [PubMed]
- Hassanin, A.; Ropiquet, A.; Couloux, A.; Cruaud, C. Evolution of the Mitochondrial Genome in Mammals Living at High Altitude: New Insights from a Study of the Tribe Caprini (Bovidae, Antilopinae). J. Mol. Evol. 2009, 68, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yang, X.; Gao, Y. Mitochondrial DNA Response to High Altitude: A New Perspective on High-Altitude Adaptation. Mitochondrial DNA 2013, 24, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, Y.; Feng, C.; Zhao, K.; Song, Z.; Zhang, Y.; Yang, L.; He, S. Mitogenomic Perspectives on the Origin of Tibetan Loaches and Their Adaptation to High Altitude. Sci. Rep. 2016, 6, 29690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Wang, X.; Ting, N.; Zhang, Y. Mitogenomic Analysis of Chinese Snub-Nosed Monkeys: Evidence of Positive Selection in NADH Dehydrogenase Genes in High-Altitude Adaptation. Mitochondrion 2011, 11, 497–503. [Google Scholar] [CrossRef]
- Da Silva, C.C.; Tomasco, I.H.; Hoffmann, F.G.; Lessa, E.P. Genes and Ecology: Accelerated Rates of Replacement Substitutions in the Cytochrome b Gene of Subterranean Rodents. Open Evol. J. 2009, 3, 17–30. [Google Scholar]
- Bondareva, O.V.; Potapova, N.A.; Konovalov, K.A.; Petrova, T.V.; Abramson, N.I. Searching for Signatures of Positive Selection in Cytochrome b Gene Associated with Subterranean Lifestyle in Fast-Evolving Arvicolines (Arvicolinae, Cricetidae, Rodentia). BMC Ecol. Evol. 2021, 21, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Gromov, I.M.; Polyakov, I.Y. Fauna of the USSR. Mammals. Tome 3. Vyp. 8. Voles (Microtinae); Nauka: Leningrad, Russia, 1977; Volume 3. [Google Scholar]
- Musser, G.G.; Carleton, M.D. Superfamily Muroidea. In Mammal Species of the World: A Taxonomic and Geographic Reference; JHU Press: Baltimore, MA, USA, 2005; pp. 894–1531. [Google Scholar]
- Abramson, N.I.; Lissovsky, A.A. Subfamily Arvicolinae. In The mammals of Russia: A Taxonomic and Geographic Reference; Pavlinov, I.Y., Lissovsky, A.A., Eds.; KMK Scientific Press: Moscow, Russia, 2012; pp. 127–141. [Google Scholar]
- Lessa, E.P.; Vassallo, A.I.; Verzi, D.H.; Mora, M.S. Evolution of Morphological Adaptations for Digging in Living and Extinct Ctenomyid and Octodontid Rodents. Biol. J. Linn. Soc. 2008, 95, 267–283. [Google Scholar] [CrossRef]
- Smorkatcheva, A.V.; Lukhtanov, V.A. Evolutionary Association between Subterranean Lifestyle and Female Sociality in Rodents. Mamm. Biol. 2014, 79, 101–109. [Google Scholar] [CrossRef]
- Shubin, I.G. The mole voles (Ellobius). In Mammals of Kazakhstan. Vol. 1 Gerbils, Voles, Altai Zokor; Sludsky, A.A., Ed.; Publishing House Nauka of Kazakh SSR: Almaty, Kazakhstan, 1978; Volume 1, pp. 188–207. [Google Scholar]
- Gambaryan, P.P. Adaptive Features of the Locomotory Organs in Fossorial Mammals; Izdatel’stvo AN Armyanskoi SSR: Erevan, Armenia, 1960. [Google Scholar]
- Salvioni, M. Home Range and Social Behavior of Three Species of European Pitymys (Mammalia, Rodentia). Behav. Ecol. Sociobiol. 1988, 22, 203–210. [Google Scholar] [CrossRef]
- Kurta, A. Mammals of the Great Lakes Region; University of Michigan Press: Ann Arbor, MI, USA, 1995. [Google Scholar]
- Giannoni, S.M.; Borghi, C.E.; Martínez-Rica, J.P. Comparing the Burrowing Behaviour of the Iberian Mole Voles (Microtus (Terricola) Lusitanicus, M. (T.) Pyrenaicus and M. (T.) Duodecimcostatus). Mammalia 1993, 57, 483–490. [Google Scholar] [CrossRef]
- Krystufek, B.; Vohralik, V. Mammals of Turkey and Cyprus: Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae; Zgodovinsko Drustvo za Juzno Primorsko: Koper, Slovenia, 2005. [Google Scholar]
- Mironov, A.D. Spatial Organization of Common Pine Vole (Microtus Subterraneus Selys-Longchamps, 1836) Colonies. Amurian Zool. J. 2020, 12, 460–476. [Google Scholar] [CrossRef]
- Smorkatcheva, A.V. The Social Organization of the Mandarine Vole, Lasiopodomys Mandarinus, during the Reproductive Period. Z. Saugetierkd. 1999, 64, 344–355. [Google Scholar]
- Abramson, N.I.; Bodrov, S.Y.; Bondareva, O.V.; Genelt-Yanovskiy, E.A.; Petrova, T.V. A Mitochondrial Genome Phylogeny of Voles and Lemmings (Rodentia: Arvicolinae): Evolutionary and Taxonomic Implications. PLoS ONE 2021, 16, e0248198. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple Alignment of Conserved Genomic Sequence with Rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassanin, A.; Léger, N.; Deutsch, J. Evidence for Multiple Reversals of Asymmetric Mutational Constraints during the Evolution of the Mitochondrial Genome of Metazoa, and Consequences for Phylogenetic Inferences. Syst. Biol. 2005, 54, 277–298. [Google Scholar] [CrossRef] [PubMed]
- Lobry, J.R. Properties of a General Model of DNA Evolution under No-Strand-Bias Conditions. J. Mol. Evol. 1995, 40, 326–330. [Google Scholar] [CrossRef]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. European Environment Agency. 2020. Available online: https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 11 February 2021).
- Yuan, F.; Nguyen, H.; Graur, D. ProtParCon: A Framework for Processing Molecular Data and Identifying Parallel and Convergent Amino Acid Replacements. Genes 2019, 10, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Nielsen, R.; Goldman, N.; Pedersen, A.-M.K. Codon-Substitution Models for Heterogeneous Selection Pressure at Amino Acid Sites. Genetics 2000, 155, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.D.; Wertheim, J.O.; Weaver, S.; Murrell, B.; Scheffler, K.; Kosakovsky Pond, S.L. Less Is More: An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection. Mol. Biol. Evol. 2015, 32, 1342–1353. [Google Scholar] [CrossRef] [Green Version]
- Wertheim, J.O.; Murrell, B.; Smith, M.D.; Kosakovsky Pond, S.L.; Scheffler, K. RELAX: Detecting Relaxed Selection in a Phylogenetic Framework. Mol. Biol. Evol. 2015, 32, 820–832. [Google Scholar] [CrossRef] [Green Version]
- Murrell, B.; Wertheim, J.O.; Moola, S.; Weighill, T.; Scheffler, K.; Kosakovsky Pond, S.L. Detecting Individual Sites Subject to Episodic Diversifying Selection. PLoS Genet. 2012, 8, e1002764. [Google Scholar] [CrossRef] [Green Version]
- Delport, W.; Poon, A.F.Y.; Frost, S.D.W.; Kosakovsky Pond, S.L. Datamonkey 2010: A Suite of Phylogenetic Analysis Tools for Evolutionary Biology. Bioinformatics 2010, 26, 2455–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pond, S.L.K.; Muse, S.V. HyPhy: Hypothesis Testing Using Phylogenies. In Statistical Methods in Molecular Evolution; Statistics for Biology and Health; Springer: New York, NY, USA, 2005; pp. 125–181. [Google Scholar]
- Huerta-Cepas, J.; Serra, F.; Bork, P. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Mol. Biol. Evol. 2016, 33, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Tomasco, I.H.; Lessa, E.P. The Evolution of Mitochondrial Genomes in Subterranean Caviomorph Rodents: Adaptation against a Background of Purifying Selection. Mol. Phylogenet. Evol. 2011, 61, 64–70. [Google Scholar] [CrossRef]
- Tavares, W.C.; Seuánez, H.N. Changes in Selection Intensity on the Mitogenome of Subterranean and Fossorial Rodents Respective to Aboveground Species. Mamm. Genome 2018, 29, 353–363. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, G.; Nevo, E.; Yang, C.; Su, J. Cytochrome b Gene Selection of Subterranean Rodent Gansu Zokor Eospalax Cansus (Rodentia, Spalacidae). Zool. Anz. 2013, 252, 118–122. [Google Scholar] [CrossRef]
- Bromham, L.; Rambaut, A.; Harvey, P.H. Determinants of Rate Variation in Mammalian DNA Sequence Evolution. J. Mol. Evol. 1996, 43, 610–621. [Google Scholar] [CrossRef]
- Martin, A.P. Metabolic Rate and Directional Nucleotide Substitution in Animal Mitochondrial DNA. Mol. Biol. Evol. 1995, 12, 1124–1131. [Google Scholar] [PubMed] [Green Version]
- Martin, A.P.; Palumbi, S.R. Body Size, Metabolic Rate, Generation Time, and the Molecular Clock. Proc. Natl. Acad. Sci. USA 1993, 90, 4087–4091. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.V.; Culver, M.; Stephens, J.C.; Johnson, W.E.; O’Brien, S.J. Rates of Nuclear and Cytoplasmic Mitochondrial DNA Sequence Divergence in Mammals. Mol. Biol. Evol. 1997, 14, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Abramson, N.I.; Lebedev, V.S.; Tesakov, A.S.; Bannikova, A.A. Supraspecies Relationships in the Subfamily Arvicolinae (Rodentia, Cricetidae): An Unexpected Result of Nuclear Gene Analysis. Mol. Biol. 2009, 43, 834. [Google Scholar] [CrossRef]
- Galewski, T.; Tilak, M.; Sanchez, S.; Chevret, P.; Paradis, E.; Douzery, E.J. The Evolutionary Radiation of Arvicolinae Rodents (Voles and Lemmings): Relative Contribution of Nuclear and Mitochondrial DNA Phylogenies. BMC Evol. Biol. 2006, 6, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steppan, S.J.; Schenk, J.J. Muroid Rodent Phylogenetics: 900-Species Tree Reveals Increasing Diversification Rates. PLoS ONE 2017, 12, e0183070. [Google Scholar] [CrossRef] [Green Version]
- Vereshchagin, N.K. The Mammals of the Caucasus; A History of the Evolution of the Fauna. (Mlekopitayushchie Kavkaza; Istoriya Formirovaniya Fauny); Publ. Acad. Nauk USSR: Jerusalem, Israel, 1959. [Google Scholar]
- Vorontsov, N.N. New Data on the Biology and Taxonomic Position of the Long-Clawed Mole Vole (Prometheomys Schaposchnikovi Satunin, 1901). Zool. Zhurnal 1966, 45, 619–623. [Google Scholar]
- Gambaryan, P.P.; Karapetyan, V.S.; Ayrumyan, K.A.; Kazaryan, K.G.; Mezhlumyan, S.K. To the Ecology of the Long-Clawed Mole Vole Prometheomys Schaposchnikovi Sat. Mater. Study Fauna Armen. SSR 1957, 3, 5–16. [Google Scholar]
- Zimina, R.P.; Yasny, E.V. Observations on the Ecology of the Long-Clawed Mole Vole. Zool. Zhurnal 1977, 82, 24–30. [Google Scholar]
- Smorkatcheva, A.V.; Aksenova, T.G.; Zorenko, T.A. Ecology of the Chinese Vole Lasiopodomys Mandarinus (Rodentia, Cricetidae) in Transbaikalia. Zool. Zhurnal 1990, 69, 115–124. [Google Scholar]
- Sun, H.; Zhang, Y.; Wang, B.; Li, Y.; Xu, W.; Mao, R.; Wang, Z. Investigation on Oxygen and Carbon Dioxide Fluctuations in Lasiopodomys Mandarinus Burrows. Pak. J. Zool 2019, 51, 1519–1526. [Google Scholar]
- Aulagnier, S.; Haffner, P.; Mitchell-Jones, A.J.; Moutou, F.; Zima, J. Mammals of Europe, North. Africa and the Middle East; Bloomsbury Wildlife: London, UK, 2018. [Google Scholar]
- Caroli, L.; Capizzi, D.; Luiselli, L. Reproductive Strategies and Life-History Traits of the Savi’s Pine Vole, Microtus Savii. Zool. Sci. 2000, 17, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Jemioło, B. Reproduction in a Laboratory Colony of the Female Pine Voles, Pitymys Subterraneus. Acta Theriol. 1983, 28, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Schröpfer, R. Die Postnatale Entwicklung Der Kleinwühlmaus, Pitymys Subterraneus De Selys-Longchamps, 1836 (Rodentia, Cricetidae). Bonn. Zool. Beitr. 1977, 28, 249–268. [Google Scholar]
Gene | Fg, ω1 | Bg, ω0 | Adjusted p-Values LRT b_Free and M0 |
---|---|---|---|
Arvicolinae (all species) | |||
Concatenate genes | 0.0946 | 0.0516 | 0.0000 |
Ellobius and Group D | |||
ATP6 | 0.13 | 0.04 | 3.43 × 10−4 |
ATP8 | 0.74 | 0.16 | 0.0052 |
COX1 | 0.03 | 0.01 | 5.04 × 10−5 |
COX2 | 0.22 | 0.02 | 1.17 × 10−9 |
CYTB | 0.06 | 0.02 | 3.74 × 10−4 |
ND1 | 0.06 | 0.03 | 0.0125 |
ND4 | 0.09 | 0.04 | 0.0017 |
ND4L | 0.18 | 0.04 | 0.0051 |
P. schaposchnikowi and Group E | |||
COX3 | 0.05 | 0.01 | 0.0136 |
L. mandarinus and Group B | |||
COX3 | 0.12 | 0.03 | 0.0324 |
CYTB | 0.23 | 0.03 | 1.70 × 10−4 |
Group | Gene | Name | B | LRT | Test p-Value | ω Distribution over Sites |
---|---|---|---|---|---|---|
Ellobius and Group D | COX2 | E. lutescens | 0.0072 | 17.9838 | 0.0001 | ω1 = 0.238 (81%) ω2 = 15.4 (19%) |
P. schaposchnikowi and Group E | ND5 | P. schaposchnikowi | 0.0149 | 4.4686 | 0.0390 | ω1 = 0.395 (89%) ω2 = 16.7 (11%) |
P. schaposchnikowi and Group F | ATP8 | P. schaposchnikowi | 0.1443 | 6.0817 | 0.0171 | ω1 = 0.0553 (90%) ω2 = ∞ (10%) |
Gene | LRT | P | K |
---|---|---|---|
Arvicolinae (all species) | |||
Concatenate genes | 396.5300 | 0.000 | 0.5200 |
Ellobius and Group D | |||
ATP6 | 38.9000 | 5.785 × 10−9 | 0.1700 |
COX1 | 24.8820 | 7.308 × 10−6 | 0.4070 |
COX3 | 9.0750 | 0.0175 | 0.1320 |
CYTB | 17.4720 | 0.0003 | 0.4816 |
ND1 | 14.7850 | 0.0011 | 0.6414 |
ND2 | 23.7070 | 1.232 × 10−5 | 0.3624 |
ND3 | 7.977 | 0.0282 | 0.5980 |
ND4 | 14.1950 | 0.0013 | 0.1628 |
P. schaposchnikowi and Group F | |||
COX1 | 18.8005 | 0.0002 | 0.3875 |
COX3 | 12.4548 | 0.0042 | 0.4027 |
ND2 | 21.2713 | 4.788 × 10−5 | 0.1834 |
ND4 | 30.1175 | 5.291 × 10−7 | 0.5331 |
ND5 | 9.9163 | 0.0147 | 0.3350 |
P. schaposchnikowi and Group E | |||
COX3 | 18.5788 | 0.0002 | 0.3382 |
L. mandarinus and Group B | |||
COX1 | 8.8720 | 0.0319 | 0.4922 |
COX3 | 11.1457 | 0.0101 | 0.0071 |
CYTB | 22.5555 | 2.652 × 10−5 | 0.3003 |
Gene | Ellobius | P. schaposchnikowi and Group F | P. schaposchnikowi and Group E | L. mandarinus | H. fertilis | Terricola |
---|---|---|---|---|---|---|
ATP6 | — | — | — | 76 | — | — |
ATP8 | 64 | 22, 41 | — | 60 | 53, 63 | — |
COX1 | 434 | — | 434, 484 | — | — | — |
COX2 | — | — | — | 218 | — | — |
COX3 | — | — | — | — | — | — |
CYTB | — | 296 | 380 | 23, 57, 67, 226, 329, 371 | 82 | — |
ND1 | — | — | — | 65, 299 | — | — |
ND2 | 69 | 83, 199, 281, 320 | — | 235 | N/A | — |
ND3 | — | — | — | 20 | — | — |
ND4 | 22, 169, 189, 256 | 188 | 19, 25, 107, 171, 188, 205, 351 | 155, 350, 441 | — | — |
ND4L | 17 | — | — | — | — | — |
ND5 | 36 | 59, 441, 491, 511 | 213, 542, 551, 602, 603 | 311, 364 | N/A | — |
ND6 | 111 | — | 4, 81 | — | — | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondareva, O.; Genelt-Yanovskiy, E.; Petrova, T.; Bodrov, S.; Smorkatcheva, A.; Abramson, N. Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia). Genes 2021, 12, 1945. https://doi.org/10.3390/genes12121945
Bondareva O, Genelt-Yanovskiy E, Petrova T, Bodrov S, Smorkatcheva A, Abramson N. Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia). Genes. 2021; 12(12):1945. https://doi.org/10.3390/genes12121945
Chicago/Turabian StyleBondareva, Olga, Evgeny Genelt-Yanovskiy, Tatyana Petrova, Semen Bodrov, Antonina Smorkatcheva, and Natalia Abramson. 2021. "Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia)" Genes 12, no. 12: 1945. https://doi.org/10.3390/genes12121945
APA StyleBondareva, O., Genelt-Yanovskiy, E., Petrova, T., Bodrov, S., Smorkatcheva, A., & Abramson, N. (2021). Signatures of Adaptation in Mitochondrial Genomes of Palearctic Subterranean Voles (Arvicolinae, Rodentia). Genes, 12(12), 1945. https://doi.org/10.3390/genes12121945