New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System
Abstract
1. Introduction
2. Overview of SNARE Function
3. The Yeast Minimal Endomembrane System
3.1. Candidate PM to TGN SNAREs
3.2. TGN and PVE SNAREs
3.3. PVE to Vacuole SNAREs
3.4. Intra-Golgi SNAREs
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, M.; Burd, C.G. Retrograde trafficking and quality control of yeast synaptobrevin, Snc1, are conferred by its transmembrane domain. Mol. Biol. Cell 2019, 30, 1729–1742. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; Fink, G.R. Yeast: An experimental organism for modern biology. Science 1988, 240, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.R.; Dietrich, F.S.; Fisk, D.G.; Binkley, G.; Balakrishnan, R.; Costanzo, M.C.; Dwight, S.S.; Hitz, B.C.; Karra, K.; Nash, R.S.; et al. The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now. Genes Genome Genet. 2014, 4, 389–398. [Google Scholar]
- Mohammadi, S.; Saberidokht, B.; Subramaniam, S.; Grama, A. Scope and limitations of yeast as a model organism for studying human tissue-specific pathways. BMC Syst. Biol. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Juan, S.; Bonifacino, B.S.G. The Mechanisms of Vesicle Budding and Fusion. Cell 2004, 116, 153–166. [Google Scholar]
- Lu, R.; Drubin, D.G.; Sun, Y. Clathrin-mediated endocytosis in budding yeast at a glance. J. Cell Sci. 2016, 129, 1531–1536. [Google Scholar] [CrossRef]
- Boettner, D.R.; Chi, R.J.; Lemmon, S.K. Lessons from yeast for clathrin-mediated endocytosis. Nat. Cell Biol. 2011, 14, 2–10. [Google Scholar] [CrossRef]
- Chi, R.J.; Harrison, M.S.; Burd, C.G. Biogenesis of endosome-derived transport carriers. Cell. Mol. Life Sci. 2015, 72, 3441–3455. [Google Scholar] [CrossRef]
- Ma, M.; Burd, C.G. Retrograde trafficking and plasma membrane recycling pathways of the budding yeast Saccharomyces cerevisiae. Traffic 2020, 21, 45–59. [Google Scholar] [CrossRef]
- Delic, M.; Valli, M.; Graf, A.B.; Pfeffer, M.; Mattanovich, D.; Gasser, B. The secretory pathway: Exploring yeast diversity. FEMS Microbiol. Rev. 2013, 37, 872–914. [Google Scholar] [CrossRef]
- De Matteis, M.A.; Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 2008, 9, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Verhage, M.; Sørensen, J.B. Vesicle Docking in Regulated Exocytosis. Traffic 2008, 9, 1414–1424. [Google Scholar] [CrossRef]
- Bianka, L.; Grosshans, D.O.; Novick, P. Rabs and their effectors: Achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. USA 2006, 103, 11821–11827. [Google Scholar]
- Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 2005, 1744, 120–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, L.; Hong, W. SNARE proteins in membrane trafficking. Traffic 2017, 18, 767–775. [Google Scholar] [CrossRef]
- Gu, F.; Crump, C.M.; Thomas, G. Trans-Golgi network sorting. Cell. Mol. Life Sci. 2001, 58, 1067–1084. [Google Scholar] [CrossRef]
- Lemmon, S.K.; Traub, L.M. Sorting in the endosomal system in yeast and animal cells. Curr. Opin Cell Biol. 2000, 12, 457–466. [Google Scholar] [CrossRef]
- Feyder, S.; De Craene, J.O.; Bar, S.; Bertazzi, D.L.; Friant, S. Membrane trafficking in the yeast Saccharomyces cerevisiae model. Int. J. Mol. Sci. 2015, 16, 1509–1525. [Google Scholar] [CrossRef]
- Weber, T.; Zemelman, B.V.; McNew, J.A.; Westermann, B.; Gmachl, M.; Parlati, F.; Söllner, T.H.; Rothman, J.E. SNAREpins: Minimal Machinery for Membrane Fusion. Cell 1998, 92, 759–772. [Google Scholar] [CrossRef]
- Scales, S.J.; Yoo, B.Y.; Scheller, R.H. The ionic layer is required for efficient dissociation of the SNARE complex by a-SNAP and NSF. Proc. Natl. Acad. Sci. USA 2001, 98, 14262–14267. [Google Scholar] [CrossRef]
- Söllner, T.; Bennett, M.K.; Whiteheart, S.W.; Scheller, R.H.; Rothman, J.E. A Protein Assembly-Disassembly Pathway In Vitro That May Correspond to Sequential Steps of Synaptic Vesicle Docking, Activation, and Fusion. Cell 1993, 75, 409–418. [Google Scholar] [CrossRef]
- Burri, L.; Lithgow, T. A Complete Set of SNAREs in Yeast. Traffic 2004, 5, 45–52. [Google Scholar] [CrossRef]
- Day, K.J.; Casler, J.C.; Glick, B.S. Budding Yeast Has a Minimal Endomembrane System. Dev. Cell 2018, 44, 56–72.e4. [Google Scholar] [CrossRef] [PubMed]
- Paumet, F.; Rahimian, V.; Rothman, J.E. The specificity of SNARE-dependent fusion is encoded in the SNARE motif. Proc. Natl. Acad. Sci. USA 2004, 101, 3376–3380. [Google Scholar] [CrossRef]
- McNew, J.A.; Sogaard, M.; Lampen, N.M.; Machida, S.; Ye, R.R.; Lacomis, L.; Tempst, P.; Rothman, J.E.; Söllner, T.H. Ytk6, a prenylated SNARE essential for ER-golgi transport. J. Biol. Chem. 1997, 272, 17776–17783. [Google Scholar] [CrossRef]
- Neiman, A.M.; Katz, L.; Brennwald, P.J. Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae. Genetics 2000, 155, 1643–1655. [Google Scholar] [PubMed]
- Yoon, T.Y.; Munson, M. SNARE complex assembly and disassembly. Curr. Biol. 2018, 28, R397–R401. [Google Scholar] [CrossRef]
- Kienle, N.; Kloepper, T.H.; Fasshauer, D. Phylogeny of the SNARE vesicle fusion machinery yields insights into the conservation of the secretory pathway in fungi. BMC Evol. Biol. 2009, 9, 19. [Google Scholar] [CrossRef]
- Manca, F.; Pincet, F.; Truskinovsky, L.; Rothman, J.E.; Foret, L.; Caruel, M. SNARE machinery is optimized for ultrafast fusion. Proc. Natl. Acad. Sci. USA 2019, 116, 2435–2442. [Google Scholar] [CrossRef]
- Hohl, M.; Parlati, F.; Wimmer, C.; Rothman, J.E.; Söllner, T.H.; Engelhardt, H. Arrangement of subunits in 20s particles consiting og NSF, SNAPs, and SNARE complexes. Mol. Cell 1998, 2, 539–548. [Google Scholar] [CrossRef]
- Strop, P.; Kaiser, S.E.; Vrljic, M.; Brunger, A.T. The structure of the yeast plasma membrane SNARE complex reveals destabilizing water-filled cavities. J. Biol. Chem. 2008, 283, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Prescianotto-Baschong, C.; Riezman, H. Morphology of the Yeast Endocytic Pathway. Mol. Biol. Cell 1998, 9, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.; Lewis, B.J.N.; Precianotto-Baschong, C.; Riezman, H.; Pelham, H.R. Specific Retrieval of the Exocytic SNARE Snc1p from Early Yeast Endosomes. Mol. Biol. Cell 2000, 11, 23–38. [Google Scholar]
- Thomas, A.; Vida, S.D.E. A New Vital Stain for Visualizing Vacuolar Membrane Dynamics and Endocytosis in Yeast. J. Cell Biol. 1995, 128, 779–792. [Google Scholar]
- Zhu, J.; Zhang, Z.T.; Tang, S.W.; Zhao, B.S.; Li, H.; Song, J.Z.; Li, D.; Xie, Z. A Validated Set of Fluorescent-Protein-Based Markers for Major Organelles in Yeast (Saccharomyces cerevisiae). mBio 2019, 10. [Google Scholar] [CrossRef]
- Holthius, J.C.; Nichpls, B.J.; Dhruvakumar, S.; Pelham, H.R. Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO J. 1998, 17, 113–126. [Google Scholar] [CrossRef]
- Coe John, G.S.; Lim Anthony, C.B.; Xu, J.; Hong, W. A Role for Tlg1p in the Transport of Proteins within the Golgi Apparatus of Saccharomyces cerevisiae. J. Cell Biol. 1999, 10, 2407–2423. [Google Scholar]
- Abeliovich, H.; Grote, E.; Novick, P.; Ferro-Novick, S. Tlg2p, a Yeast Syntaxin Homolog That Resides on the Golgi and Endocytic Structures. J. Cell Biol. 1998, 273, 11719–11727. [Google Scholar] [CrossRef]
- von Mollard, G.F.; Nothwehr, S.F.; Stevens, T.H. The Yeast v-SNARE Vti1p Mediates Two Vesicle Transport Pathways through Interactions with the t-SNAREs Sed5p and Pep12p. J. Cell Biol. 1997, 137, 1511–1524. [Google Scholar] [CrossRef]
- Becherer, K.A.; Rieder, S.E.; Emr, S.D.; Jones, E.W. Novel syntaxin homologue, pep12, required for sorting of lumenal hydrolases to lysosome-like vacuole in yeast. Mol. Biol. Cell 1996, 7, 579–594. [Google Scholar] [CrossRef]
- Lewis, M.J.; Pelham, H.R.B. A new yeast endosomal SNARE related to mammalian syntaxin 8. Traffic 2002, 3, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Jones, E.W. Pth1/Vam3p Is the Syntaxin Homolog at the Vacuolar Membrane of Saccharomyces cerevisae Required for the Delivery of Vacuolar Hydrolases. Genetics 1998, 148, 85–98. [Google Scholar] [PubMed]
- Nichols, B.J.; Ungermann, C.; Pelham, H.R.; Wickner, W.T.; Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs. Nature 1997, 387, 199–202. [Google Scholar] [CrossRef]
- Stevens, T.; Esmon, B.; Schekman, R. Early Stages in the Yeast Secretory Pathway Are Required for Transport of Carboxypeptidase Y to the Vacuole. Cell 1982, 30, 439–448. [Google Scholar] [CrossRef]
- Sato, T.K.; Darsow, T.; Emr, S.D. Vam7p, a SNAP-25-Like Molecule, and Vam3p, a Syntaxin Homolog, Function Together in Yeast Vacuolar Protein Trafficking. Mol. Cell. Biol. 1998, 18, 5308–5319. [Google Scholar] [CrossRef] [PubMed]
- Ungermann, C.; Wickner, W. Vam7p, a vacuolar SNAP-25 homolog, is required for SNARE complex integrity and vacuole docking and fusion. EMBO J. 1998, 17, 3269–3276. [Google Scholar] [CrossRef]
- Haas, A.; Conradt, B.; Wickner, W.J. G-protein ligands inhibit in vitro reactions of vacuole inheritance. Mol. Cell. Biol. 1994, 126, 87–97. [Google Scholar] [CrossRef]
- Hardwick, K.G.; Pelham, H.R. SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. Mol. Cell. Biol. 1992, 119, 513–521. [Google Scholar] [CrossRef]
- David, K.; Banfield, M.J.L.; Pelham, H.R.B. A SNARE like protein required for traffic through the Golgi complex. Nature 1995, 375, 806–809. [Google Scholar]
- McNew, J.A.; Coe, J.G.; Sogaard, M.; Zemelmen, B.V.; Wimmer, C.; Hong, W.; Sollner, T.H. Gos1p, a saccharomyces SNARE involved in Golgi transport. FEBS Lett. 1998, 435, 89–95. [Google Scholar] [CrossRef]
- Viotti, C.; Bubeck, J.; Stierhof, Y.-D.; Krebs, M.; Langhans, M.; van den Berg, W.; van Dongen, W.; Richter, S.; Geldner, N.; Takano, J.; et al. Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 2010, 22, 1344–1357. [Google Scholar] [CrossRef] [PubMed]
- Wendler, F.; Tooze, S. Syntaxin 6: The Promiscuous Behaviour of a SNARE Protein. Traffic 2001, 2, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Hohenstein, A.C.; Roche, P.A. SNAP-29 Is a Promiscuous Syntaxin-Binding SNARE. Biochem. Biophys. Res. Commun. 2001, 285, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gonzalez, L., Jr.; Prekeris, R.; Steegmaier, M.; Advani, R.J.; Scheller, R.H. SNARE Interactions Are Not Selective IMPLICATIONS FOR MEMBRANE FUSION SPECIFICITY. Mol. Cell. Biol. 1999, 274, 5649–5653. [Google Scholar]
- Tsui, M.M.; Banfield, D.K. Yeast Golgi SNARE interactions are promiscuous. J. Cell Sci. 2000, 113, 145–152. [Google Scholar]
- Furukawa, N.; Mima, J. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci. Rep. 2014, 4, 1–13. [Google Scholar] [CrossRef]
- Flowerdew, S.E.; Burgoyne, R.D. A VAMP7/Vti1a complex distinguishes a non-conventional traffic route to the cell surface used by KChIP1 and Kv4 potassium channels. Biochem. J. 2009, 418, 529–540. [Google Scholar] [CrossRef]
- Ganley, I.G.; Espinosa, E.; Pfeffer, S.R. A syntaxin 10-SNARE complex distinguishes two distinct transport routes form endosomes to the trans-Golgi in human cells. J. Cell Sci. 2008, 180, 159–172. [Google Scholar]
- Itakura, E.; Kishi-Itakura, C.; Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012, 151, 1256–1269. [Google Scholar] [CrossRef]
- Miller, S.E.; Collins, B.M.; McCoy, A.J.; Robinson, M.S.; Owen, D.J. A SNARE–adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nat. Lett. 2007, 450, 570–574. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Dulubova, I.; Min, S.-W.; Chen, X.; Rizo, J.; Südhof, T.C. Sly1 binds to Golgi and ER syntaxins via conserved N-terminal peptide motif. Dev. Cell 2002, 2, 295–305. [Google Scholar] [CrossRef]
- Anna, P.; Newman, J.S.; Ferro-Novick, S. Members of a group of interacting yeast genes required for transport from the ER to the Golgi. Mol. Cell. Biol. 1990, 10, 3405–3414. [Google Scholar]
- Shim, J.; Newman, A.P.; Ferro-Novick, S. The BOS1 gene encodes an essential 27-kd putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J. Cell Biol. 1991, 113, 55–64. [Google Scholar] [CrossRef]
- Sweet, D.J.; Pelham, H.R. The S. cerevisiae SEC20 gene encodes a membrane glycoprotein sorted by the HDEL retrieval system. EMBO J. 1992, 11, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Burri, L.; Varlamov, O.; Doege, C.A.; Hofmann, K.; Beilharz, T.; Rothman, J.E.; Söllner, T.H.; Lithgow, T. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2003, 100, 9873–9877. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, K.L.; Munson, M.; Miller, R.B.; Filip, T.J.; Fairman, R.; Hughson, F.M. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol. 1998, 5, 793–802. [Google Scholar] [CrossRef]
- Williams, D.C.; Novick, P.J. Analysis of SEC9 suppression reveals a relationship of SNARE function to cell physiology. PLoS ONE 2009, 4, e5449. [Google Scholar] [CrossRef][Green Version]
- Stenmark, H.; Olkkonen, V.M. The Rab GTPase family. Genome Biol. 2001, 2, 1–7. [Google Scholar] [CrossRef][Green Version]
- Frei, S.B.; Rahl, P.B.; Nussbaum, M.; Briggs, B.J.; Calero, M.; Janeczko, S.; Regan, A.D.; Chen, C.Z.; Barral, Y.; Whittaker, G.R.; et al. Bioinformatic and comparative localization of Rab proteins revelas functional insights into the uncharacterized GTPases Ypt10p and Ypt11p. Mol. Cell. Biol. 2006, 26, 7299–7317. [Google Scholar] [CrossRef][Green Version]
- Sogaard, M.; Tani, K.; Ye, R.R.; Geromanos, S.; Tempst, P.; Kirchhausen, T.; Rotheman, J.E.; Sollner, T. A Rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 1994, 78, 937–948. [Google Scholar] [CrossRef]
- Schimmo, F.; Suzanne, I.; Pfeffer, S.R. Rab GTPases, directors of vesicle docking. J. Biol. Chem. 1998, 273, 22161–22164. [Google Scholar] [CrossRef] [PubMed]
- Grote, E.; Novick, P.J. Promiscuity in Rab-SNARE interactions. Mol. Biol. Cell 1999, 10, 4149–4161. [Google Scholar] [CrossRef] [PubMed]
- Lipatova, Z.; Hain, A.U.; Nazarko, V.Y.; Segev, N. Ypt/Rab GTPases: Principles learned from yeast. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Soulard, A.; Cremonesi, A.; Moes, S.; Schütz, F.; Jenö, P.; Hall, M.N. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates. Mol. Biol. Cell 2010, 21, 3475–3486. [Google Scholar] [CrossRef]
- Swaney, D.L.; Beltrao, P.; Starita, L.; Guo, A.; Rush, J.; Fields, S.; Krogan, N.J.; Villén, J. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 2013, 10, 676–682. [Google Scholar] [CrossRef]
- Linial, M. SNARE Proteins—Why So Many, Why So Few? J. Neurochem. 1997, 69, 1781–1792. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Nishiki, T.; Omori, A.; Sekiguchi, M.; Kamata, Y.; Kozaki, S.; Takahashi, M. Phosphorylation of 25-kDa Synaptosome-associated Protein. J. Biol. Chem. 1996, 271, 14548–14553. [Google Scholar] [CrossRef]
- Marash, M.; Gerst, J.E. Phosphorylation of the autoinhibitory domain of the Sso t-SNAREs promotes binding of the Vsm1 SNARE regulator in yeast. Mol. Biol. Cell 2003, 14, 3114–3125. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grissom, J.H.; Segarra, V.A.; Chi, R.J. New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes 2020, 11, 899. https://doi.org/10.3390/genes11080899
Grissom JH, Segarra VA, Chi RJ. New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes. 2020; 11(8):899. https://doi.org/10.3390/genes11080899
Chicago/Turabian StyleGrissom, James H., Verónica A. Segarra, and Richard J. Chi. 2020. "New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System" Genes 11, no. 8: 899. https://doi.org/10.3390/genes11080899
APA StyleGrissom, J. H., Segarra, V. A., & Chi, R. J. (2020). New Perspectives on SNARE Function in the Yeast Minimal Endomembrane System. Genes, 11(8), 899. https://doi.org/10.3390/genes11080899