Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Cytotype Screening
2.3. Chloroplast DNA (cpDNA)
2.4. Microsatellite Analysis (SSRs)
2.5. Germination Experiment
2.6. Statistical Analyses
2.6.1. Chloroplast DNA (cpDNA)
2.6.2. Microsatellite Analyses
2.6.3. Origin of Hybrids
2.6.4. Germination
3. Results
3.1. Cytotype Composition of Adult Trees
3.2. Chloroplast DNA Diversity
3.3. Microsatellite Variation
3.4. Seed Germination
3.5. Ploidy Level Variation of Seedlings
4. Discussion
4.1. Origin of Individual Ploidy Levels
4.2. Maintenance of the Hybrid Zone
4.3. Differences in Germination
4.4. Unbalanced Germination of Triploids
4.5. Type and Origin of Hybrid Zone
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Barton, N.H.; Hewitt, G.M. Analysis of hybrid zones. Annu. Rev. Ecol. Evol. Syst. 1985, 16, 113–148. [Google Scholar] [CrossRef]
- Ross, R.I.; Agren, J.A.; Pannell, J.R. Exogenous selection shapes germination behavior and seedling traits of populations at different altitudes in a Senecio hybrid zone. Ann. Bot. 2012, 110, 1439–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, R.J.; Brennan, A.C. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M.L. Natural Hybridization and Evolution; Oxford University Press: Oxford, UK, 1997; p. 215. [Google Scholar]
- Wang, H.; McArthur, E.D.; Sanderson, S.C.; Graham, J.H.; Freeman, D.C. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). IV. Reciprocal transplant experiments. Evolution 1997, 51, 95–102. [Google Scholar] [PubMed]
- Rieseberg, L.H.; Carney, S.E. Plant Hybridization (Tansley Review, 102). New Phytol. 1998, 140, 599–624. [Google Scholar] [CrossRef]
- Milne, R.I.; Terzioglu, S.; Abbott, R.J. A hybrid zone dominated by fertile F1s: Maintenance of species barriers in Rhododendron. Mol. Ecol. 2003, 12, 2719–2729. [Google Scholar] [CrossRef]
- Chapman, M.A.; Forbes, D.G.; Abbott, R.J. Pollen competition among two species of Senecio (Asteraceae) that form a hybrid zone on Mt. Etna, Sicily. Am. J. Bot. 2005, 92, 730–735. [Google Scholar] [CrossRef]
- Rosenthal, D.M.; Schwarzbach, A.E.; Donovan, L.A.; Raymond, O.; Rieseberg, L.H. Phenotypic differentiation between three ancient hybrid taxa and their parental species. Int. J. Plant Sci. 2002, 163, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Johnston, J.A.; Arnold, M.L.; Donovan, L.A. High hybrid fitness at seed and seedling life history stages in Louisiana Irises. J. Ecol. 2003, 91, 438–446. [Google Scholar] [CrossRef]
- Barton, N.H.; Gale, R.S. Genetic analysis of hybrid zones. In Hybrid Zones and the Evolutionary Process; Harrison, R.G., Ed.; Oxford University Press: New York, NY, USA, 1993; pp. 13–45. [Google Scholar]
- Arnold, M.L.; Hodges, S.A. Are natural hybrids fit or unfit relative to their parents. Trends Ecol. Evol. 1995, 10, 67–71. [Google Scholar] [CrossRef]
- Mandák, B. Germination requirements of invasive and non-invasive Atriplex species: A comparative study. Flora 2003, 198, 45–54. [Google Scholar] [CrossRef]
- Douda, J.; Doudová, J.; Hodková, E.; Vít, P.; Krak, K.; Mandák, B. Population history explains the performance of an annual herb—Within and beyond its European species range. J. Ecol. 2019, 108, 958–968. [Google Scholar] [CrossRef]
- Douda, J.; Doudová, J.; Drašnarová, A.; Kuneš, P.; Hadincová, V.; Krak, K.; Zákravský, P. Mandák B: Migration patterns of subgenus Alnus in Europe since the Last Glacial Maximum. A systematic review. PLoS ONE 2014, 9, e88709. [Google Scholar] [CrossRef]
- Havrdová, A.; Douda, J.; Krak, K.; Vít, P.; Hadincová, V.; Zákravský, P.; Mandák, B. Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture. Mol. Ecol. 2015, 24, 4759–4777. [Google Scholar] [CrossRef] [PubMed]
- Mandák, B.; Vít, P.; Krak, K.; Trávníček, P.; Havrdová, A.; Hadincová, V.; Zákravský, P.; Jarolímová, V.; Bacles, C.F.E.; Douda, J. Flow cytometry, microsatellites and niche models reveal the origins and geographical structure of Alnus glutinosa populations in Europe. Ann. Bot. 2016, 117, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Vít, P.; Douda, J.; Krak, K.; Havrdová, A.; Mandák, B. Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa—An analysis based on morphometry, karyology, flow cytometry and microsatellites. Taxon 2017, 66, 567–583. [Google Scholar] [CrossRef]
- Šmíd, J.; Vít, P.; Douda, J.; Krak, K.; Mandák, B. Distribution, hybridisation and morphological variation of Alnus rohlenae (Betulaceae) an endemic species of the Balkan Peninsula. Eur. J. For. Res. under review.
- Korpelainen, H. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 2004, 91, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Schönswetter, P.; Lachmayer, M.; Lettner, C.; Prehsler, D.; Rechnitzer, S.; Reich, D.S.; Sonnleitner, M.; Wagner, I.; Hülber, K.; Schneeweiss, G.M.; et al. Sympatric diploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps are separated along an altitudinal gradient. J. Plant Res. 2007, 120, 721–725. [Google Scholar] [CrossRef]
- Doležel, J.; Greilhuber, J.; Suda, J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007, 2, 2233–2244. [Google Scholar] [CrossRef]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Drašnarová, A.; Krak, K.; Vít, P.; Doudová, J.; Douda, J.; Hadincová, V.; Zákravský, P.; Mandák, B. Cross-amplification and multiplexing of SSR markers for Alnus glutinosa and A. incana. Tree Genet. Genomes 2014, 10, 865–873. [Google Scholar] [CrossRef]
- Lepais, O.; Bacles, C.F.E. De novo discovery and multiplexed amplification of microsatellite markers for black alder (Alnus glutinosa) and related species using SSR-enriched shotgun pyrosequencing. J. Hered. 2011, 102, 627–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosling, P.G.; McCartan, S.A.; Peace, A.J. Seed dormancy and germination characteristics of common alder (Alnus glutinosa L.) indicate some potential to adapt to climate change in Britain. Int. J. For. Res. 2009, 82, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Villesen, P. FaBox: An online Fasta Sequence Toolbox. 2007. Available online: http://www.birc.au.dk/software/fabox (accessed on 5 July 2019).
- Ingvarsson, P.; Ribstein, S.; Taylor, D. Molecular evolution of insertions and deletion in the chloroplast genome of Silene. Mol. Biol. Evol. 2003, 20, 1737–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, M.P.; Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 2000, 49, 369–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinform. 2005, 4, 65–69. [Google Scholar] [CrossRef]
- Swofford, D.L. PAUP* Version 4.0 b10. Phylogenetic Analysis Using Parsimony (* and Other Methods); Sinauer: Sunderland, MA, USA, 2002. [Google Scholar]
- Ronquist, F.; Huelsenbeck, J.P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Nylander, J.A.A. MrModeltest v2; Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.-H.; Xie, N.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Rambaut, A. Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed Phylogenetics and Dating with Confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [PubMed]
- Hardy, O.J.; Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Clark, L.V.; Jasieniuk, M. POLYSAT: An R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 2011, 11, 526–566. [Google Scholar] [CrossRef]
- R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2014. Available online: http://www.R-project.org/ (accessed on 20 June 2019).
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Nordborg, M.; Hu, T.T.; Ishino, Y.; Jhaveri, J.; Toomajian, C.; Zheng, H.; Bakker, E.; Calabrese, P.; Gladstone, J.; Goyal, R.; et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 2005, 3, e196. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Anderson, E.C.; Thompson, E.A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 2002, 160, 1217–1229. [Google Scholar]
- Hothorn, T.; Kneib, T.; Bühlmann, P. Conditional transformation models by example. In Proceedings of the 28th International Workshop on Statistical Modelling, 8–12 July 2013; Muggeo, V.M.R., Capursi, V., Boscaino, G., Lovison, G., Eds.; Universitá Degli Studi Di Palermo: Palermo, Italy, 2013; pp. 15–26. [Google Scholar]
- Burton, T.L.; Husband, B.C. Fecundity and offspring ploidy in matings among diploid, triploid and tetraploid Chamerion angustifolium (Onagraceae): Consequences for tetraploid establishment. Heredity 2001, 87, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, J.; Schemske, D.W. Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Annu. Rev. Ecol. Syst. 1998, 29, 467–501. [Google Scholar] [CrossRef] [Green Version]
- Anamthawat-Jónsson, K.; Thórsson, A.T. Natural hybridisation in birch: Triploid hybrids between Betula nana and B. pubescens. Plant Cell Tiss. Org. 2003, 75, 99–107. [Google Scholar] [CrossRef]
- Fehrer, J.; Krahulcová, A.; Krahulec, F.; Chrtek, J., Jr.; Rosen-Baumová, R.; Bräutigam, S. Evolutionary as-pects in Hieracium subgenus Pilosella. In Apomixis: Evolution, Mechanisms and Perspectives; Regnum Vegetabile 147; Hörandl, E., Grossniklaus, U., van Dijk, P., Sharbel, T., Eds.; Koeltz Scientific Books: Königstein, Germany, 2007. [Google Scholar]
- Thórsson, Ć.T.; Pálsson, S.; Lascoux, M.; Anamthawat-Jónsson, K. Introgression and phylogeography of Betula nana (diploid), B. pubescens (tetraploid) and their triploid hybrids in Iceland inferred from cpDNA haplotype variation. J. Biogeogr. 2010, 37, 2098–2110. [Google Scholar]
- Krahulec, F.; Krahulcová, A.; Hlaváček, R. Rare hybrid swarm of Pilosella polymastix × P. officinarum: Cytotype structure and modes of reproduction. Preslia 2014, 86, 179–192. [Google Scholar]
- Rieseberg, L.H.; Soltis, D.E. Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plants 1991, 5, 65–84. [Google Scholar]
- Soltis, D.E.; Kuzoff, R.K. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 1995, 49, 727–742. [Google Scholar] [CrossRef]
- Fehrer, J.; Gemeinholzer, B.; Chrtek, J., Jr.; Bräutigam, S. Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol. Phylogenet. Evol. 2007, 42, 347–361. [Google Scholar] [CrossRef]
- Aleza, P.; Juárez, J.; Cuenca, J.; Ollitrault, P.; Navarro, L. Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep. 2010, 29, 1023–1034. [Google Scholar] [CrossRef]
- Roe, A.D.; MacQuarrie, C.J.; Gros-Louis, M.C.; Simpson, J.D.; Lamarche, J.; Beardmore, T.; Thompson, S.L.; Tanguay, P.; Isabel, N. Fitness dynamics within a poplar hybrid zone: I. Prezygotic and postzygotic barriers impacting a native poplar hybrid stand. Ecol. Evol. 2014, 4, 1629–1647. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.L.; Bennett, B.D. Natural hybridization in Louisiana irises: Genetic variation and ecological determinants. In Hybrid Zones and the Evolutionary Process; Harrison, R.G., Ed.; Oxford University Press: Oxford, UK, 1993; pp. 115–139. [Google Scholar]
- Cruzan, M.B. Evolutionary Biology: A Plant Perspective; Oxford University Press: New York, NY, USA, 2018; p. 537. [Google Scholar]
- Brennan, A.C.; Bridle, J.R.; Wang, A.L.; Hiscock, S.J.; Abbott, R.J. Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol. 2009, 183, 702–717. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.M.; Diez, J.J. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For. Syst. 2012, 21, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Štochlová, P.; Novotná, K.; Černý, K. Factors affecting the development of Phytophthora alni ssp. alni in Alnus glutinosa L. J. For. Sci. 2012, 58, 123–130. [Google Scholar]
- McVean, D.N. Ecology of Alnus glutinosa (L.) Gaertn.: I. Fruit formation. J. Ecol. 1955, 43, 46–61. [Google Scholar] [CrossRef]
- Ashcroft, M.B.; French, K.O.; Chisholm, L.A. An evaluation of environmental factors affecting species distributions. Ecol. Model. 2011, 222, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.H.; Yang, J.H.; Luo, C.J. Review and prospect of mulberry polyploidy breeding. Agric. Sci. Zhejiang 2000, 6, 304–306. [Google Scholar]
- Aleza, P.; Juárez, J.; Ollitrault, P.; Navarro, L. Production of tetraploid plants of non-apomictic citrus genotypes. Plant Cell Rep. 2009, 28, 1837–1846. [Google Scholar] [CrossRef]
- Aleza, P.; Juárez, J.; Cuenca, J.; Ollitrault, P.; Navarro, L. Extensive citrus triploid hybrid production by 2x × 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Rep. 2012, 31, 1723–1735. [Google Scholar] [CrossRef]
- Gramlich, S.; Hörandl, E. Fitness of natural willow hybrids in a pioneer mosaic hybrid zone. Ecol. Evol. 2016, 6, 7645–7655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, I.M.; Dilkes, B.P.; Young, K.; Watson, B.; Wu, H.; Comai, L. Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 2005, 170, 1979–1988. [Google Scholar] [CrossRef] [Green Version]
- Henry, I.M.; Dilkes, B.P.; Tyagi, A.P.; Lin, H.Y.; Comai, L. Dosage and parent-of-origin effects shaping aneuploid swarms in A. thaliana. Heredity 2009, 103, 458–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duszynska, D.; Vilhjálmsson, B.J.; Bravo, R.C.; Swamidatta, S.; Juenger, T.E.; Donoghue, M.T.A.; Comte, A.; Nordborg, M.; Sharbel, T.F.; Brychkova, G.; et al. Transgenerational effects of inter-ploidy cross direction on reproduction and F2 seed development of Arabidopsis thaliana F1 hybrid triploids. Plant Reprod. 2019, 32, 275–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slatkin, M. Gene flow and selection in a two-locus system. Genetics 1975, 81, 787–802. [Google Scholar]
- Felber-Girard, M.; Felber, F.; Buttler, A. Habitat differentiation in a narrow hybrid zone between diploid and tetraploid Anthoxanthum alpinum. New Phytol. 1996, 133, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, G.M. Hybrid zones—Natural laboratories for evolutionary studies. Trends Ecol. Evol. 1988, 3, 158–167. [Google Scholar] [CrossRef]
- Janes, J.K.; Hamilton, J.A. Mixing it up: The role of hybridization in forest management and conservation under climate change. For. Trees Livelihoods 2017, 8, 237. [Google Scholar] [CrossRef] [Green Version]
- Wielstra, B.; Burke, T.; Butlin, R.K.; Avcı, A.; Üzüm, N.; Bozkurt, E.; Olgun, K.; Arntzen, J.W. A genomic footprint of hybrid zone movement in crested newts. Evol. Lett. 2017, 1, 93–101. [Google Scholar] [CrossRef]
- Sobel, J.M.; Streisfeld, M.A. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 2015, 69, 447–461. [Google Scholar] [CrossRef]
- Stankowski, S.; Chase, M.A.; Fuiten, A.M.; Ralph, P.L. The tempo of linked selection: Emergence of a heterogeneous genomic landscape during a recent radiation of monkey flowers. PLoS ONE 2018, e1002112. [Google Scholar]
- Szymura, J.M.; Barton, N.H. Genetic analysis of a hybrid zone between the fire-bellied toads Bombina bombina and B. variegata, near Cracow in Southern Poland. Evolution 1986, 40, 1141–1159. [Google Scholar] [PubMed]
- Arntzen, J.W.; Abrahams, C.; Meilink, W.R.; Iosif, R.; Zuiderwijk, A. Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period. Biodivers. Conserv. 2017, 26, 1411–1430. [Google Scholar] [CrossRef]
Final Germination | Df | F-Value | p-Value |
---|---|---|---|
Taxa | 2 | 17.879 | <0.001 *** |
Regime | 1 | 2.824 | 0.094 |
Taxa × Regime | 2 | 0.147 | 0.864 |
Germination rate | |||
Taxa | 2 | 5.217 | 0.006 |
Regime | 1 | 18.982 | <0.001 *** |
Taxa × Regime | 2 | 1.308 | 0.272 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šmíd, J.; Douda, J.; Krak, K.; Mandák, B. Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers. Genes 2020, 11, 770. https://doi.org/10.3390/genes11070770
Šmíd J, Douda J, Krak K, Mandák B. Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers. Genes. 2020; 11(7):770. https://doi.org/10.3390/genes11070770
Chicago/Turabian StyleŠmíd, Jan, Jan Douda, Karol Krak, and Bohumil Mandák. 2020. "Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers" Genes 11, no. 7: 770. https://doi.org/10.3390/genes11070770
APA StyleŠmíd, J., Douda, J., Krak, K., & Mandák, B. (2020). Analyses of Hybrid Viability across a Hybrid Zone between Two Alnus Species Using Microsatellites and cpDNA Markers. Genes, 11(7), 770. https://doi.org/10.3390/genes11070770