Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media and Cultivation Conditions
2.1.1. Malt Extract Agar (MP)
2.1.2. Barley Oat Meal Agar (BOA)
2.1.3. Potato Dextrose Agar (PDA)
2.2. Bioinformatics
2.3. RNA Extraction and cDNA Synthesis
2.4. Selection and Primer Design of Reference and Target Genes
3. Results and Discussion
3.1. Analysis of D. teres Phenotypes on Several Media
3.2. Identification of CHS Genes in D. teres and Phylogenetic Analysis
3.3. Expression Analysis of Cell Wall-Related Genes in D. teres
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kangor, T.; Sooväli, P.; Tamm, Y.; Tamm, I.; Koppel, M. Malting barley diseases, yield and quality—responses to using various agro-technology regimes. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 57–62. [Google Scholar] [CrossRef]
- Campbell, G.F.; Crous, P.W.; Lucas, J.A. Pyrenophora teres f. maculata, the cause of Pyrenophora leaf spot of barley in South Africa. Mycol. Res. 1999, 103, 257–267. [Google Scholar]
- McLean, M.S.; Howlett, B.J.; Hollaway, G.J. Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: A review. Crop Pasture Sci. 2009, 60, 303–315. [Google Scholar] [CrossRef]
- Lightfoot, D.J.; Able, A.J. Growth of Pyrenophora teres in planta during barley net blotch disease. Australas. Plant Pathol. 2010, 39, 499–507. [Google Scholar] [CrossRef]
- Liu, Z.; Ellwood, S.R.; Oliver, R.P.; Friesen, T.L. Pyrenophora teres: Profile of an increasingly damaging barley pathogen. Mol. Plant Pathol. 2011, 12, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, S.M.; Free, S.J. The structure and synthesis of the fungal cell wall. BioEssays News Rev. Mol. Cell. Dev. Biol. 2006, 28, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Georgopapadakou, N.H.; Tkacz, J.S. The fungal cell wall as a drug target. Trends Microbiol. 1995, 3, 98–104. [Google Scholar] [CrossRef]
- Yoshimi, A.; Miyazawa, K.; Abe, K. Cell wall structure and biogenesis in Aspergillus species. Biosci. Biotechnol. Biochem. 2016, 80, 1700–1711. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.A.; Yang, J.; Li, G.-T.; Qi, L.L.; Zhang, Y.J.; Wang, C.F.; Zhao, W.S.; Xu, J.-R.; Peng, Y.L. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog. 2012, 8, e1002526. [Google Scholar] [CrossRef] [Green Version]
- Free, S.J. Fungal cell wall organization and biosynthesis. Adv. Genet. 2013, 81, 33–82. [Google Scholar]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, 1–25. [Google Scholar]
- Ellwood, S.R.; Liu, Z.; Syme, R.A.; Lai, Z.; Hane, J.K.; Keiper, F.; Moffat, C.S.; Oliver, R.P.; Friesen, T.L. A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol. 2010, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt, N.A.; Richards, J.K.; Brueggeman, R.S.; Friesen, T.L. Reference assembly and annotation of the Pyrenophora teres f. teres Isolate 0-1. G3 Genes Genomes Genet. 2018, 8, 1–8. [Google Scholar]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Esmaeel, Q.; Jacquard, C.; Clément, C.; Sanchez, L.; Barka, E.A. Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World J. Microbiol. Biotechnol. 2019, 35, 1–15. [Google Scholar] [CrossRef]
- Kloepper, J.W.; Ryu, C.-M.; Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 2004, 94, 1259–1266. [Google Scholar] [CrossRef] [Green Version]
- Barka, E.A.; Gognies, S.; Nowak, J.; Audran, J.-C.; Belarbi, A. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol. Control 2002, 24, 135–142. [Google Scholar] [CrossRef]
- Miotto-Vilanova, L.; Jacquard, C.; Courteaux, B.; Worthman, L.; Michel, J.; Clément, C.; Barka, E.A.; Sanchez, L. Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front. Plant Sci. 2016, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.K.; Nowak, J. Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can. J. Microbiol. 1998, 44, 528–536. [Google Scholar] [CrossRef]
- Beauvais, A.; Fontaine, T.; Aimanianda, V.; Latgé, J.-P. Aspergillus cell wall and biofilm. Mycopathologia 2014, 178, 371–377. [Google Scholar] [CrossRef]
- Onesirosan, P.T.; Banttari, E.E. Effect of light and temperature upon sporulation of Helminthosporium teres in culture. Phytopathology 1969, 59, 906–909. [Google Scholar]
- de Groot, P.W.J.; Brandt, B.W.; Horiuchi, H.; Ram, A.F.J.; de Koster, C.G.; Klis, F.M. Comprehensive genomic analysis of cell wall genes in Aspergillus nidulans. Fungal Genet. Biol. 2009, 46, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Causier, B.E.; Milling, R.J.; Foster, S.G.; Adams, D.J. Characterization of chitin synthase from Botrytis cinerea. Microbiology 1994, 140, 2199–2205. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Hall, A.; Perfect, E.; Gurr, S.J. Differential expression of two Blumeria graminis chitin synthase genes. Mol. Plant Pathol. 2000, 1, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Balestrini, R.; Sillo, F.; Kohler, A.; Schneider, G.; Faccio, A.; Tisserant, E.; Martin, F.; Bonfante, P. Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr. Genet. 2012, 58, 165–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Biotechnology Information (NCBI). Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 2 March 2020).
- Motif Scan. Available online: https://myhits.isb-sib.ch/cgibin/motif_scan (accessed on 10 January 2020).
- Clustal Omega. Available online: https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=clustalo-I20181219-133935-0983-50653640-p1m (accessed on 10 January 2020).
- TMHMM (v. 2.0). Available online: http://www.cbs.dtu.dk/services/TMHMM-2.0/ (accessed on 10 January 2020).
- Phobius. Available online: http://phobius.sbc.su.se/ (accessed on 10 January 2020).
- Mangeot-Peter, L.; Legay, S.; Hausman, J.F.; Esposito, S.; Guerriero, G. Identification of reference genes for RT-qPCR data normalization in Cannabis sativa stem tissues. Int. J. Mol. Sci. 2016, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bohle, K.; Jungebloud, A.; Göcke, Y.; Dalpiaz, A.; Cordes, C.; Horn, H.; Hempel, D.C. Selection of reference genes for normalisation of specific gene quantification data of Aspergillus niger. J. Biotechnol. 2007, 132, 353–358. [Google Scholar] [CrossRef]
- Dilger, M.; Felsenstein, F.G.; Schwarz, G. Identification and quantitative expression analysis of genes that are differentially expressed during conidial germination in Pyrenophora teres. Mol. Genet. Genom. 2003, 270, 147–155. [Google Scholar] [CrossRef]
- Guerriero, G.; Silvestrini, L.; Legay, S.; Maixner, F.; Sulyok, M.; Hausman, J.F.; Strauss, J. Deletion of the celA gene in Aspergillus nidulans triggers overexpression of secondary metabolite biosynthetic genes. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Roldán, M.C.; Maier, F.J.; Schäfer, W. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley. Mol. Plant-Microbe Interact. MPMI 2001, 14, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 1998, 95, 14863–14868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldanha, A.J. Java Treeview- extensible visualization of microarray data. Bioinforma. Oxf. Engl. 2004, 20, 3246–3248. [Google Scholar] [CrossRef] [Green Version]
- Moya, P.; Pedemonte, D.; Amengual, S.; Franco, M.; Sisterna, M. Antagonism and modes of action of Chaetomium globosum species group, potential biocontrol agent of barley foliar diseases. Boletin Soc. Argent. Bot. 2016, 51, 569–578. [Google Scholar] [CrossRef]
- Osherov, N.; May, G.S. The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 2001, 199, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Deadman, M.L.; Cooke, B.M. A method of spore production for Drechslera teres using detached barley leaves. Trans. Br. Mycol. Soc. 1985, 85, 489–493. [Google Scholar] [CrossRef]
- Scott, D.B. Identity of Pyrenophora isolates causing net-type and spot-type lesions on barley. Mycopathologia 1991, 116, 29–35. [Google Scholar] [CrossRef]
- Alcorn, J.L. The Taxonomy of “Helminthosporium” Species. Annu. Rev. Phytopathol. 1988, 26, 37–56. [Google Scholar] [CrossRef]
- Mironenko, N.V.; Afanasenko, O.S.; Filatova, O.A.; Kopahnke, D. Genetic control of virulence of Pyrenophora teres drechs, the causative agent of net blotch in barley. Genetika 2005, 41, 1674–1680. [Google Scholar] [CrossRef]
- Pană, M.; Cristea, S.; Manole, M.S.; Cernat, S.; Zala, C.; Berca, L.M. Research on the influence of temperature, light and culture media on growth and development of Pyrenophora teres fungus (in vitro). Agron. Ser. Sci. Res. Lucr. Stiintifice Ser. Agron. 2015, 58, 147–150. [Google Scholar]
- Jayasena, K.W.; George, E.; Loughman, R.; Hardy, G. First record of the teleomorph stage of Drechslera teres f. maculata in Australia. Australas. Plant Pathol. 2004, 33, 455–456. [Google Scholar] [CrossRef]
- Barka, E.A.; Nowak, J.; Clément, C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl. Environ. Microbiol. 2006, 72, 7246–7252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compant, S.; Reiter, B.; Sessitsch, A.; Nowak, J.; Clément, C.; Barka, E.A. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 2005, 71, 1685–1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinedo, I.; Ledger, T.; Greve, M.; Poupin, M.J. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front. Plant Sci. 2015, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Jacquard, C.; Villaume, S.; Michel, J.; Rabenoelina, F.; Clément, C.; Barka, E.A.; Dhondt-Cordelier, S.; Vaillant-Gaveau, N. Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front. Plant Sci. 2015, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Latgé, J.P. 30 years of battling the cell wall. Med. Mycol. 2017, 55, 4–9. [Google Scholar] [CrossRef]
- Lee, J.I.; Choi, J.H.; Park, B.C.; Park, Y.H.; Lee, M.Y.; Park, H.M.; Maeng, P.J. Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet. Biol. 2004, 41, 635–646. [Google Scholar] [CrossRef]
- Seidl, V. Chitinases of filamentous fungi: A large group of diverse proteins with multiple physiological functions. Fungal Biol. Rev. 2008, 22, 36–42. [Google Scholar] [CrossRef]
- Orlean, P.; Funai, D. Priming and elongation of chitin chains: Implications for chitin synthase mechanism. Cell Surf. 2019, 5, 1–7. [Google Scholar] [CrossRef]
- Chigira, Y.; Abe, K.; Gomi, K.; Nakajima, T. chsZ, a gene for a novel class of chitin synthase from Aspergillus oryzae. Curr. Genet. 2002, 41, 261–267. [Google Scholar] [CrossRef]
- Choquer, M.; Boccara, M.; Gonçalves, I.R.; Soulié, M.-C.; Vidal-Cros, A. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. Eur. J. Biochem. 2004, 271, 2153–2164. [Google Scholar] [CrossRef] [PubMed]
- Lenardon, M.D.; Munro, C.A.; Gow, N.A. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 2010, 13, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.J.-L. Characterization of Specific Domains of the Cellulose and Chitin Synthases from Pathogenic Oomycetes; KTH Royal Institute of Technology: Stockholm, Sweden, 2015. [Google Scholar]
- Munro, C.A.; Winter, K.; Buchan, A.; Henry, K.; Becker, J.M.; Brown, A.J.P.; Bulawa, C.E.; Gow, N.A.R. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol. Microbiol. 2001, 39, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- Rogg, L.E.; Fortwendel, J.R.; Juvvadi, P.R.; Steinbach, W.J. Regulation of expression, activity and localization of fungal chitin synthases. Med. Mycol. 2012, 50, 2–17. [Google Scholar] [CrossRef]
- Ichinomiya, M.; Yamada, E.; Yamashita, S.; Ohta, A.; Horiuchi, H. Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans. Eukaryot. Cell 2005, 4, 1125–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiuchi, H. Functional diversity of chitin synthases of Aspergillus nidulans in hyphal growth, conidiophore development and septum formation. Med. Mycol. 2009, 47, 47–52. [Google Scholar] [CrossRef]
- Lamichhane, A.K.; Garraffo, H.M.; Cai, H.; Walter, P.J.; Kwon-Chung, K.J.; Chang, Y.C. A novel role of fungal type I myosin in regulating membrane properties and its association with d-amino acid utilization in Cryptococcus gattii. MBio 2019, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nagahashi, S.; Sudoh, M.; Ono, N.; Sawada, R.; Yamaguchi, E.; Uchida, Y.; Mio, T.; Takagi, M.; Arisawa, M.; Yamada-Okabe, H. Characterization of chitin synthase 2 of Saccharomyces cerevisiae. Implication of two highly conserved domains as possible catalytic sites. J. Biol. Chem. 1995, 270, 13961–13967. [Google Scholar] [CrossRef] [Green Version]
- Merzendorfer, H. Insect chitin synthases: A review. J. Comp. Physiol. 2006, 176, 1–15. [Google Scholar] [CrossRef]
- Guerriero, G. Putative chitin synthases from Branchiostoma floridae show extracellular matrix-related domains and mosaic structures. Genom. Proteom. Bioinform. 2012, 10, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fesel, P.H.; Zuccaro, A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet. Biol. 2016, 90, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, T.; Hartland, R.P.; Beauvais, A.; Diaquin, M.; Latge, J.-P. Purification and characterization of an endo-1,3-β-glucanase from Aspergillus fumigatus. Eur. J. Biochem. 1997, 243, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Mouyna, I.; Hartl, L.; Latgé, J.-P. β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Front. Microbiol. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Park, B.-C.; Park, Y.-H.; Yi, S.; Choi, Y.K.; Kang, E.-H.; Park, H.-M. Transcriptional regulation of fksA, a β-1,3-glucan synthase gene, by the APSES protein StuA during Aspergillus nidulans development. J. Microbiol. 2014, 52, 940–947. [Google Scholar] [CrossRef]
- Samar, D.; Kieler, J.B.; Klutts, J.S. Identification and deletion of Tft1, a predicted glycosyltransferase necessary for cell wall β-1,3;1,4-glucan synthesis in Aspergillus fumigatus. PLoS ONE 2015, 10, e0117336. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, H.; Shaikh, S.; Sayyed, R. Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: An overview. In Rhizotrophs: Plant Growth Promotion to Bioremediation; Springer: Singapore, 2017; Volume 2, pp. 183–203. [Google Scholar]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 1–16. [Google Scholar] [CrossRef] [Green Version]
Species of Fungi | Protein Id | Accession Number |
---|---|---|
Drechslera teres | DtCHS1 | EFQ95838 |
DtCHS2 | EFQ92549 | |
DtCHS3 | EFQ88914 | |
DtCHS4 | EFQ93986 | |
DtCHS5 | EFQ92060 | |
DtCHS7 | EFQ96223 | |
Aspergillus nidulans | AnCHS1 | P30583 |
AnCHS2 | P30584 | |
AnCHS3 | XP_660127 | |
AnCHS4 | P78611 | |
AnCHS5 | XP_663922 | |
AnCHS7 | XP_658650 | |
Alternaria alternata | AaCHS1 | XP_018390769 |
AaCHS2 | XP_018389428 | |
AaCHS3 | XP_018384374 | |
AaCHS4 | XP_018387091 | |
AaCHS5 | XP_018384599 | |
AaCHS7 | XP_018384594 | |
Botrytis cinerea | BcCHS1 | XP_024550705 |
BcCHS2 | XP_001550325 | |
BcCHS3 | XP_001557191 | |
BcCHS4 | XP_024546183 | |
BcCHS5 | XP_001545514 | |
BcCHS7 | XP_024549635 | |
Blumeria graminis | BgCHS1 | EPQ66343 |
BgCHS2 | EPQ67341 | |
BgCHS3 | EPQ67743 | |
BgCHS4 | CCU76828 | |
BgCHS5 | AAF04279 | |
BgCHS7 | CCU74227 | |
Fusarium graminearum | FgCHS1 | CAC41025 |
FgCHS2 | XP_011318411 | |
FgCHS3 | PCD18709 | |
FgCHS4 | XP_011317052 | |
FgCHS5 | XP_011317820 | |
FgCHS7 | XP_011317804 | |
Tuber melanosporum | TmCHS1 | XP_002842229 |
TmCHS2 | XP_002840530 | |
TmCHS3 | XP_002837735 | |
TmCHS4 | XP_002840095 | |
TmCHS5 | XP_002839897 | |
TmCHS7 | XP_002835817 | |
Magnaporthe grisea | MgCHS2 | CAA65275 |
MgCHS3 | CAA65276 | |
MgCHS4 | AAB71411 | |
MgCHS5 | BAA74449 | |
MgCHS7 | ACH58563 |
Name | Sequence (5’–3’) | Amplicon Length (bp) | Amplicon Tm (°C) | PCR Efficiency (%) | Regression Coefficient (R2) |
---|---|---|---|---|---|
Actin Fwd | ATGTTGGTGATGAGGCACAG | 123 | 84.4 | 87.5 | 0.999 |
Actin Rev | GCTCGTTGTAGAAGGTGTGATG | ||||
ApsC Fwd | TCACCGATTCAGGTCTCAAC | 148 | 85.8 | 87.8 | 0.998 |
ApsC Rev | ATGTTGGGGCTCTTGATGTC | ||||
Cos4 Fwd | GCACACTTCTCCCCAGAGC | 104 | 87.8 | 89.6 | 0.999 |
Cos4 Rev | CCATCGCTTCTCGATATTGG | ||||
GAPDH Fwd | AGGGCAAACTGAACGGTATC | 92 | 82.9 | 93.9 | 0.998 |
GAPDH Rev | GGCATCGAAAATGGAAGAGC | ||||
GlkA Fwd | CGCTTGGAACTGCTTTCTTC | 106 | 86.8 | 93.8 | 0.995 |
GlkA Rev | TGTAGGACGATTGGGTTTCG | ||||
PfkA Fwd | GTTCCCAGCCCAGTTATTTG | 93 | 81.9 | 91.3 | 0.998 |
PfkA Rev | AGCAACAGCGACTTCTTTGG | ||||
PgiA Fwd | CAACTTCCACCAACTTCTCG | 98 | 82.9 | 95.0 | 0.999 |
PgiA Rev | TTAGCAGACCACCAATGACG | ||||
SarA Fwd | AGATGCCATTTCCGAGGAC | 116 | 86.4 | 92.4 | 0.997 |
SarA Rev | CCACACTGCACATGAAGACC | ||||
IsdA Fwd | TCAAGAAGATGTGGCTGTCG | 89 | 85.3 | 86.0 | 0.999 |
IsdA Rev | GATGGTGGGGATGACAATG | ||||
H2B Fwd | TACAAGGTCCTCAAGCAGGTC | 96 | 83.8 | 90.6 | 0.997 |
H2B Rev | AACACGCTCGAAGATGTCG | ||||
RS14 Fwd | CACATCACCGATCTTTCTGG | 146 | 88.2 | 87.0 | 0.997 |
RS14 Rev | GTAATGCCGAGTTCCTTGC | ||||
PTK1 Fwd | TGCTCCTAAACGCAAACTGC | 93 | 84.2 | 92.0 | 0.999 |
PTK1 Rev | CCGTCATGAATCCAGAGTTG | ||||
CHS1 Fwd | GGACATCAAAAAGGGTGTCG | 119 | 82.2 | 89.4 | 0.999 |
CHS1 Rev | ATGCCTGGAAGAACCATCTG | ||||
CHS2 Fwd | TCCAAGAGGGTATTGCGAAG | 102 | 82.3 | 102.0 | 0.988 |
CHS2 Rev | TGAATTTGAGGTCCGAGTCC | ||||
CHS3 Fwd | GCCTGAAGCAAAAGAACAGC | 90 | 83.2 | 91.4 | 0.999 |
CHS3 Rev | AAATGCAGACTTCGGGGTTC | ||||
CHS4 Fwd | TCATCATCTGCGACGGTATG | 115 | 83.3 | 94.0 | 0.996 |
CHS4 Rev | GAAAATGCCTGAACCTCGTG | ||||
CHS5 Fwd | CAAGTGCGTTCGTCAACAAG | 107 | 83.4 | 93.0 | 0.999 |
CHS5 Rev | GTCCAAGAAACTCGGCAAAC | ||||
CHS7 Fwd | CGGAAAAGAACTCGCTCATC | 141 | 85.8 | 91.2 | 0.998 |
CHS7 Rev | GGAAAGCAGAGAATCGCAAC | ||||
FksA Fwd | AGTTTCTTACGCTGGCAACC | 146 | 89.5 | 89.0 | 0.999 |
FksA Rev | CTTCCTTGGTACAGGGAATCTG | ||||
EngA Fwd | TCAAGTGTGGAAGGGTATCG | 107 | 84.8 | 93.3 | 0.994 |
EngA Rev | AGCCGTAATGGAAGTGATGG | ||||
ExgB Fwd | TGGATGATGGGAGATGAGTG | 90 | 82.0 | 102.8 | 0.996 |
ExgB Rev | GGCCTTTGTTTGACCAAGTG | ||||
ExgC Fwd | TAAACACAGGCGGATGGTTC | 145 | 88.1 | 91.3 | 0.994 |
ExgC Rev | CACGAATTCCAGTGGTCTTG | ||||
ExgD Fwd | GACGCAAACGAAGAGAATCC | 101 | 86.3 | 88.2 | 0.998 |
ExgD Rev | TGGTAGTAAATCGCCCTGTG | ||||
celA Fwd | CATTACCGCCCTTTTGTCAC | 117 | 81.0 | 88.7 | 0.998 |
celA Rev | ATGAAGAACCACGCAAGACC |
CHS | No. of TMDs | Length | Domains (E-values) |
---|---|---|---|
CHS1 | 15 | 926 | Glycosyltransferase (0.0011), Chitin synthase (1,7e−152), Chitin synthase N-terminal (1,5e−53) |
CHS2 | 15 | 1064 | Chitin synthase (3,3e−153), Chitin synthase N-terminal (3,1e−43) |
CHS3 | 15 | 901 | Chitin synthase (4,6e−123), Chitin synthase N-terminal (4e−53) |
CHS4 | 15 | 1226 | Cytochrome b5-like heme (6.8e−10), Chitin synthase (0) |
CHS5 | 13 | 1844 | Cytochrome b5-like heme (2.8e−15), Chitin synthase (0), DEK-C terminal domain term (5.3e−24), Myosin-head (3.9e−165) |
CHS7 | 13 | 851 | Chitin synthase (9.9e−7) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Backes, A.; Hausman, J.-F.; Renaut, J.; Ait Barka, E.; Jacquard, C.; Guerriero, G. Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes 2020, 11, 300. https://doi.org/10.3390/genes11030300
Backes A, Hausman J-F, Renaut J, Ait Barka E, Jacquard C, Guerriero G. Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes. 2020; 11(3):300. https://doi.org/10.3390/genes11030300
Chicago/Turabian StyleBackes, Aurélie, Jean-Francois Hausman, Jenny Renaut, Essaid Ait Barka, Cédric Jacquard, and Gea Guerriero. 2020. "Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres" Genes 11, no. 3: 300. https://doi.org/10.3390/genes11030300
APA StyleBackes, A., Hausman, J.-F., Renaut, J., Ait Barka, E., Jacquard, C., & Guerriero, G. (2020). Expression Analysis of Cell Wall-Related Genes in the Plant Pathogenic Fungus Drechslera teres. Genes, 11(3), 300. https://doi.org/10.3390/genes11030300