The Plasticity of Genome Architecture
Funding
Conflicts of Interest
References
- Ruiz-Herrera, A.; Farré, M.; Robinson, T.J. Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity 2012, 108, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deakin, J.E.; Potter, S.; O’Neill, R.; Ruiz-Herrera, A.; Cioffi, M.B.; Eldridge, M.D.B.; Fukui, K.; Graves, J.A.; Griffin, D.; Grutzner, F.; et al. Chromosomics: Bridging the gap between genomes and chromosomes. Genes 2019, 10, 627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhie, A.; McCarthy, S.A.; Fedrigo, O.; Damas, J.; Formenti, G.; Koren, S.; Uliano-Silva, M.; Chow, W.; Fungtammasan, A.; Gedman, G.L.; et al. Towards complete and error-free genome assemblies of all vertebrate species. BioRxiv 2020. [Google Scholar] [CrossRef]
- Miga, K.H.; Koren, S.; Rhie, A.; Vollger, M.R.; Gershman, A.; Bzikadze, A.; Brooks, S.; Howe, E.; Porubsky, D.; Logsdon, G.A.; et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 2020, 585, 79–84. [Google Scholar] [CrossRef]
- Louzada, S.; Lopes, M.; Ferreira, D.; Adega, F.; Escudeiro, A.; Gama-Carvalho, M.; Chaves, R. Decoding the role of satellite DNA in genome architecture and plasticity—An evolutionary and clinical affair. Genes 2020, 11, 72. [Google Scholar] [CrossRef] [Green Version]
- Sember, A.; Pelikánová, S.; de Bello Cioffi, M.; Šlechtová, M.; Hatanaka, T.; Do Doan, H.; Knytl, M.; Ráb, P. Taxonomic diversity not associated with gross karyotype differentiation: The case of bighead carps, genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae). Genes 2020, 11, 479. [Google Scholar] [CrossRef]
- Sember, A.; de Oliveira, E.A.; Ráb, P.; Bertollo, L.A.C.; de Freitas, N.L.; Ferreira Viana, P.; Yano, C.F.; Hatanaka, T.; Ferreira Marinho, M.M.; de Moraes, L.R.L.; et al. Centric fusions behind the karyotype evolution of neotropical Nannostomus pencilfishes (Characiforme, Lebiasinidae): First insights from a molecular perspective. Genes 2020, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Furo, I.; Kretschmer, R.; O’Brien, P.C.M.; Pereira, J.C.; Ferguson-Smith, M.A.; de Oliveira, E.H.C. Phylogenetic analysis and karyotype evolution in two species of core Gruiformes: Aramides cajaneus and Psophia viridis. Genes 2020, 11, 307. [Google Scholar] [CrossRef] [Green Version]
- Kretschemer, R.; de Oliveira Furo, I.; Baia Gomes, A.J.; Kiazim, L.G.; Gunski, R.J.; del Valle Garnero, A.; Pereira, J.C.; Ferguson-Smith, M.A.; de Oliveira, E.H.C.; Griffin, D.K.; et al. A comprehensive cytogenetic analysis of several members of the family Columbidae (Aves, Columbiformes). Genes 2020, 11, 632. [Google Scholar] [CrossRef]
- Damas, J.; Kim, J.; Farré, M.; Griffin, D.K.; Larkin, D.M. Reconstruction of avian ancestral karyotypes reveals differences in the evolutionary history of macro- and microchromosomes. Genome Biol. 2018, 19, 155. [Google Scholar] [CrossRef]
- Garcia, F.; Biedma, L.; Calzada, J.; Román, J.; Lozano, A.; Cortés, F.; Godoy, J.A.; Ruiz-Herrera, A. Chromosomal differentiation in genetically isolated populations of the marsh-specialist Crocidura suaveolens (Mammalia: Soricidae). Genes 2020, 11, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, W. Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: Chromosome and variation. J. Morphol. 1916, 27, 179–331. [Google Scholar] [CrossRef] [Green Version]
- Pialek, J.; Hauffe, H.C.; Searle, J.B. Chromosomal variation in the house mouse. Biol. J. Linn. Soc. 2005, 8, 535–563. [Google Scholar] [CrossRef] [Green Version]
- Medarde, N.; Lopez-Fuster, M.J.; Muñoz-Muñoz, F.; Ventura, J. Spatio-temporal variation in the structure of a chromosomal polymorphism zone in the house mouse. Heredity 2012, 109, 78–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vara, C.; Capilla, L.; Ferretti, L.; Ledda, A.; Sánchez-Guillén, R.A.; Gabriel, S.I.; Albert-Lizandra, G.; Florit-Sabater, B.; Bello-Rodríguez, J.; Ventura, J.; et al. PRDM9 diversity at fine geographical scale reveals contrasting evolutionary patterns and functional constraints in natural populations of house mice. Mol. Biol. Evol. 2019, 36, 1686–1700. [Google Scholar] [CrossRef] [PubMed]
- Tapisso, J.T.; Gabriel, S.I.; Cerveira, A.M.; Britton-Davidian, J.; Ganem, G.; Searle, J.B.; Ramalhinho, M.G.; Mathias, M.L. Spatial and temporal dynamics of contact zones between chromosomal races of house mice, Mus musculus domesticus, on Madeira Island. Genes 2020, 11, 748. [Google Scholar] [CrossRef]
- Manterola, M.; Page, J.; Vasco, C.; Berríos, S.; Parra, M.T.; Viera, A.; Rufas, J.S.; Zuccotti, M.; Garagna, S.; Fernández-Donoso, R.A. High incidence of meiotic silencing of unsynapsed chromatin is not associated with substantial pachytene loss in heterozygous male mice carrying multiple simple Robertsonian translocations. PLoS Genet. 2009, 5, e1000625. [Google Scholar] [CrossRef] [Green Version]
- Capilla, L.; Medarde, N.; Alemany-Schmidt, A.; Oliver-Bonet, M.; Ventura, J.; Ruiz-Herrera, A. Genetic recombination variation in wild Robertsonian mice: On the role of chromosomal fusions and Prdm9 allelic background. Proc. R. Soc. B 2014, 281, 20140297. [Google Scholar] [CrossRef] [Green Version]
- White, M.J.D. Animal Cytology and Evolution, 3rd ed.; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- King, M. Species Evolution: The Role of Chromosome Change 1993; Cambridge University Press: Cambridge, UK, 1993; 366p. [Google Scholar]
- Matveevsky, S.; Kolomiets, O.; Bogdanov, A.; Alpeeva, E.; Bakloushinskaya, I. Meiotic chromosome contacts as a plausible prelude for Robertsonian translocations. Genes 2020, 11, 386. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Kinney, N.A.; Timoshevskiy, V.A.; Sharakhova, M.V.; Sharakhov, I.V. Structural variation of the X chromosome heterochromatin in the Anopheles gambiae Complex. Genes 2020, 11, 327. [Google Scholar] [CrossRef] [Green Version]
- Bista, B.; Valenzuela, N. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 2020, 11, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdi, H.P.; Silva, W.T.A.; Such, A. Why do some sex chromosomes degenerate more slowly than others? The odd case of ratite sex chromosomes. Genes 2020, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B. The evolution of sex chromosomes. Science 1991, 251, 1030–1033. [Google Scholar] [CrossRef] [PubMed]
- Waters, P.D.; Ruiz-Herrera, A. Meiotic executioner genes protect the Y from extinction. Trends Genet. 2020, 36, 728–738. [Google Scholar] [CrossRef]
- Romanenko, S.A.; Smorkatcheva, A.V.; Kovalskaya, Y.M.; Prokopov, D.Y.; Lemskaya, N.A.; Gladkikh, O.L.; Polikarpov, I.A.; Serdyukova, N.A.; Trifonov, V.A.; Molodtseva, A.S.; et al. Complex structure of Lasiopodomys mandarinus vinogradovi sex chromosomes, sex determination, and intraspecific autosomal polymorphism. Genes 2020, 11, 374. [Google Scholar] [CrossRef] [Green Version]
- Proskuryakova, A.A.; Kulemzina, A.I.; Perelman, P.L.; Yudkin, D.V.; Lemskaya, N.A.; Okhlopkov, I.M.; Kirillin, E.V.; Farré, M.; Larkin, D.M.; Roelke-Parker, M.E.; et al. Comparative chromosome mapping of musk Ox and the X chromosome among some Bovidae species. Genes 2020, 11, 857. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farré, M.; Ruiz-Herrera, A. The Plasticity of Genome Architecture. Genes 2020, 11, 1413. https://doi.org/10.3390/genes11121413
Farré M, Ruiz-Herrera A. The Plasticity of Genome Architecture. Genes. 2020; 11(12):1413. https://doi.org/10.3390/genes11121413
Chicago/Turabian StyleFarré, Marta, and Aurora Ruiz-Herrera. 2020. "The Plasticity of Genome Architecture" Genes 11, no. 12: 1413. https://doi.org/10.3390/genes11121413