A Synthetic Strong and Constitutive Promoter Derived from the Stellaria media pro-SmAMP1 and pro-SmAMP2 Promoters for Effective Transgene Expression in Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants for the Experiments
2.2. Novel Deletion, Chimeric and Synthetic Variants of Promoters
2.3. Genetic Constructs for Plant Transformation
2.4. Agrobacterium Strains
2.5. Agrobacterium Infiltration of Plants
2.6. Genetic Transformation of the Plants
2.7. Proline Treatment
2.8. Quantitation of GUS Activity
2.9. Analysis of Tobacco and Arabidopsis Plants with Polymerase Chain Reaction
2.10. RNA Extraction
2.11. CAGE Library Preparation
2.12. Statistical Data Processing
3. Results
3.1. Mapping of the pro-SmAMP1 and pro-SmAMP2 Transcription Start Sites
3.2. Comparative in silico Analysis of pro-SmAMP1 and pro-SmAMP2 Promoter Sequences
3.3. Identification of Smallest pro-SmAMP1 and pro-SmAMP2 Promoters for Effective Gene Expression in Agrobacterium-Mediated Plant Infiltration
3.4. New Deletion Variants of Pro-SmAMP1 and Pro-SmAMP2 Promoters Differ in the Expression of Selectable Markers in Transgenic Plant Cells on Selection Medium with Kanamycin
3.5. Identification of Mutations Causing High-Level Transient Expression of the Reporter Gene
3.6. Identification of Mutations Determining Constitutive Expression of the Selectable Marker Gene in Transgenic Plant Cells on Medium with Kanamycin
3.7. Functional Validation of the Role of the ACTCAT Cis-Element in the pro-SmAMP1 Promoter under Proline Stress Conditions
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Promoter Variant pro-SmAMP | Primer | ||
---|---|---|---|
Designation | Sequence in 5′–3′ Direction | ||
1 | 425 | The deletion variant was created earlier and was originally designated as 481 bp [16] | |
373 | F375(amp1) | gaattctagagcatcgtcaataaa | |
Rev(amp1) | ccatggtttcacttgatttttttg | ||
323 | F325amp1 | gaattccaatctcgataatacatttt | |
Rev(amp1) | |||
307 | F309(amp2) | gaattcaaatcacccgataacact | |
Rev(amp1) | |||
273 | F275amp1 | gaattctatatagcctttatctttatctcg | |
Rev(amp1) | |||
220 | F222amp1 | gaattcagtctatccgtatagaccct | |
Rev(amp1) | |||
170 | F172amp1 | gaattccaagatattaaagtgtgtgt | |
Rev(amp1) | |||
102 | F104(amp2) | gaattcggttatcatcaagcattt | |
Rev(amp1) | |||
58 | F62amp2 | gaattcgcaaacggcaaacc | |
Rev(amp1) | |||
5′-UTR2 | A1 | gaattcggttatcatcaagcatttgccacgtaaacaaaataatctaacatgcaaacggcaaaccctt | |
B1 | tttatgatgaaatgtagatgagtacgtaggggtatatatagcggaaatgttaagggtttgccgtt | ||
D51 | |||
2 | 438 | The deletion variant was created earlier and was originally designated as 455 bp [17] | |
426 | F428(amp2) | gaattcataacttgttctagattttcaataag | |
Rev(amp2) | ccatggtttcacttgatttttagt | ||
374 | F376(amp2) | gaattctagagcatcgtctataaattcc | |
Rev(amp2) | |||
324 | F326(amp2) | gaattctaatacattttaaccaaatcacc | |
Rev(amp2) | |||
308 | F310(amp2) | gaattcaaatcacccgataacact | |
Rev(amp2) | |||
274 | F276(amp2) | gaattctctatagcctttatcttatctcg | |
Rev(amp2) | |||
222 | F224(amp2) | gaattcagtgtatccgtatag | |
Rev(amp2) | |||
172 | F174(amp2) | gaattccaagaaattaaagtgtgg | |
Rev(amp2) | |||
104 | F106(amp2) | gaattcggttatcatcaagcattt | |
Rev(amp2) | |||
60 | F62(amp2) | gaattcgcaaacggcaaacc | |
Rev(amp2) | |||
5UTR1 | A | gaattcggttatcatcaagcatttgccacgtaaacaaaataatgtaacatgcaaacggcaaaccctt | |
F | tttatgatgaaatgtaggggagtacgtagaggtctatatatagtggaaatgttaagggtttgccgttt | ||
U1 | ccatggtttcacttgatttttttgtgactagcttttgtatgtaaggtttatgtttatgatgaaatgt | ||
(67) | 69 | gaattcggttatcatcaagcatttgccacgtaaacaaaataatc | |
Rev(amp2) | |||
(67,34) | A36 | gaattcggttatcatcaagcatttgccacgtaaacaaaataatctaacatgcaaacggcaaaccctt | |
C36 | tttatgatgaaatgtaggggagtacgtagaggtctatatatagcggaaatgttaagggtttgccgtt | ||
D36 | ccatggtttcacttgatttttagtgtgactagtttttgtatgtaaggtttatgtttatgatgaaatgta | ||
(24) | A | ||
D51 | |||
C26 | tttatgatgaaatgtaggggagtacgtagaggtcatatatagtggaaatgttaagggtttgccgttt | ||
(23) | A | ||
D51 | |||
C25 | tttatgatgaaatgtaggggagtacgtagaggttatatatagtggaaatgttaagggtttgccgttt | ||
(24,23) | A | ||
D51 | |||
C26,25 | tttatgatgaaatgtaggggagtacgtagaggtatatatagtggaaatgttaagggtttgccgttt | ||
(20) | A | ||
D51 | |||
C22 | tttatgatgaaatgtaggggagtacgtaggggtctatatatagtggaaatgttaagggtttgccgttt | ||
(9) | A | ||
D51 | |||
C11 | tttatgatgaaatgtaggtgagtacgtagaggtctatatatagtggaaatgttaagggtttgccgttt | ||
(8) | A | ||
D51 | |||
C10 | tttatgatgaaatgtagaggagtacgtagaggtctatatatagtggaaatgttaagggtttgccgttt | ||
(9,8) | A | ||
D51 | |||
C11,10 | tttatgatgaaatgtagatgagtacgtagaggtctatatatagtggaaatgttaagggtttgccgttt | ||
(20,9,8) | A | ||
D51 | |||
C22,11,10 | tttatgatgaaatgtagatgagtacgtaggggtctatatatagtggaaatgttaagggtttgccgttt | ||
(24,23,20,9,8) | A | ||
D51 | |||
C26,25,22,11,10 | tttatgatgaaatgtagatgagtacgtaggggtatatatagtggaaatgttaagggtttgccgttt | ||
(24,23,20,9,8)-5′-UTR1 | A | ||
U1 | |||
C41,40,37,26,25 |
Appendix B
Promoter | Deletion Variant, bp | No. T0 Plant | T1 Plants | χ2 | Segregation Ratio 3:1 | |
---|---|---|---|---|---|---|
Kanamycin-Resistant | Kanamycin-Sensitive | |||||
pro-SmAMP1 | –425 | 1 | 372 | 48 | 41.26 | NO |
2 | 1288 | 424 | 0.05 | YES | ||
3 | 182 | 70 | 1.04 | YES | ||
–373 | 1 | 438 | 91 | 17.16 | NO | |
2 | 429 | 112 | 5.33 | NO | ||
3 | 186 | 59 | 0.11 | YES | ||
–323 | 1 | 396 | 20 | 90.46 | NO | |
2 | 436 | 70 | 33.65 | NO | ||
3 | 93 | 22 | 2.11 | YES | ||
–307 | 1 | 371 | 114 | 0.58 | YES | |
2 | 392 | 22 | 85.57 | NO | ||
3 | 350 | 1 | 114.35 | NO | ||
–273 | 1 | 243 | 67 | 1.90 | YES | |
2 | 351 | 16 | 83.39 | NO | ||
3 | 378 | 142 | 1.48 | YES | ||
–220 | 1 | 151 | 53 | 0.10 | YES | |
2 | 432 | 27 | 89.47 | NO | ||
3 | 219 | 2 | 68.43 | NO | ||
–170 | 1 | 406 | 18 | 97.41 | NO | |
2 | 253 | 80 | 0.17 | YES | ||
3 | 261 | 17 | 52.88 | NO | ||
–102 | 1 | 302 | 85 | 1.90 | YES | |
2 | 377 | 114 | 0.83 | YES | ||
3 | 456 | 105 | 11.81 | NO | ||
pro-SmAMP2 | –438 | 1 | 302 | 85 | 1.90 | YES |
2 | 456 | 105 | 11.81 | NO | ||
3 | 377 | 119 | 0.27 | YES | ||
–426 | 1 | 546 | 81 | 48.81 | NO | |
2 | 10 | 430 | 1241.21 | NO | ||
3 | 298 | 97 | 0.04 | YES | ||
–374 | 1 | 355 | 20 | 77.36 | NO | |
2 | 299 | 71 | 6.66 | NO | ||
3 | 342 | 106 | 0.43 | YES | ||
–324 | 1 | 353 | 30 | 60.20 | NO | |
2 | 344 | 132 | 1.89 | YES | ||
3 | 358 | 29 | 63.26 | NO | ||
–308 | 1 | 200 | 133 | 39.64 | NO | |
2 | 422 | 6 | 127.12 | NO | ||
3 | 368 | 135 | 0.91 | YES | ||
–274 | 1 | 524 | 45 | 88.65 | NO | |
2 | 69 | 8 | 8.77 | NO | ||
3 | 403 | 144 | 0.51 | YES | ||
–222 | 1 | 364 | 185 | 22.15 | NO | |
2 | 523 | 57 | 71.21 | NO | ||
3 | 399 | 147 | 1.08 | YES | ||
–172 | 1 | 730 | 253 | 0.29 | YES | |
2 | 424 | 137 | 0.10 | YES | ||
3 | 615 | 43 | 119.65 | NO | ||
–104 | 1 | 328 | 111 | 0.02 | YES | |
2 | 394 | 124 | 0.31 | YES | ||
3 | 529 | 78 | 47.79 | NO |
Promoter | Deletion Variant, bp | No. of T1 Plant | T2 Plants | χ2 | Segregation Ratio 3:1 | |
---|---|---|---|---|---|---|
Kanamycin-Resistant | Kanamycin-Sensitive | |||||
pro-SmAMP1 | –425 | 1 | 509 | 125 | 9.44 | NO |
2 | 611 | 131 | 21.35 | NO | ||
3 | 988 | 302 | 1.74 | YES | ||
–373 | 1 | 130 | 45 | 0.05 | YES | |
2 | 115 | 37 | 0.04 | YES | ||
3 | 83 | 64 | 26.94 | NO | ||
4 | 36 | 39 | 29.16 | NO | ||
–323 | 1 | 264 | 85 | 0.08 | YES | |
2 | 156 | 9 | 33.62 | NO | ||
3 | 95 | 48 | 5.60 | NO | ||
4 | 126 | 87 | 28.52 | NO | ||
–307 | 1 | 105 | 11 | 14.90 | NO | |
2 | 183 | 64 | 0.11 | YES | ||
3 | 132 | 4 | 35.29 | NO | ||
–273 | 1 | 151 | 6 | 37.56 | NO | |
2 | 239 | 0 | 79.67 | NO | ||
3 | 302 | 105 | 0.14 | YES | ||
–220 | 1 | 84 | 30 | 0.11 | YES | |
–170 | 1 | 280 | 35 | 32.41 | NO | |
2 | 70 | 22 | 0.06 | YES | ||
3 | 127 | 43 | 0.01 | YES | ||
pro-SmAMP2 | –438 | 1 | 573 | 194 | 0.04 | YES |
2 | 475 | 78 | 35.01 | NO | ||
3 | 562 | 37 | 113.19 | NO | ||
4 | 713 | 212 | 2.14 | YES | ||
–426 | 1 | 118 | 85 | 30.82 | NO | |
2 | 125 | 113 | 64.14 | NO | ||
3 | 352 | 95 | 3.35 | YES | ||
–374 | 1 | 27 | 30 | 23.21 | NO | |
2 | 65 | 24 | 0.18 | YES | ||
–324 | 1 | 45 | 60 | 57.86 | NO | |
2 | 84 | 27 | 0.03 | YES | ||
3 | 64 | 72 | 56.63 | NO | ||
–308 | 1 | 82 | 26 | 0.05 | YES | |
2 | 53 | 18 | 0.00 | YES | ||
–274 | 1 | 15 | 20 | 19.29 | NO | |
2 | 62 | 22 | 0.06 | YES | ||
3 | 69 | 26 | 0.28 | YES | ||
4 | 82 | 0 | 27.33 | NO | ||
–222 | 1 | 338 | 104 | 0.51 | YES | |
2 | 561 | 106 | 29.51 | NO | ||
–172 | 1 | 78 | 27 | 0.03 | YES | |
2 | 0 | 92 | 276.00 | NO | ||
3 | 49 | 53 | 39.54 | NO | ||
4 | 89 | 33 | 0.27 | YES |
References
- Hernandez-Garcia, C.M.; Finer, J.J. Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 2014, 217, 109–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, C.; Grotewold, E. Genome wide analysis of Arabidopsis core promoters. BMC Genom. 2005, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.Y.; Yoshitsugu, T.; Sakurai, T.; Seki, M.; Shinozaki, K.; Obokata, J. Heterogeneity of Arabidopsis core promoters revealed by high density TSS analysis. Plant J. 2009, 60, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Morton, T.; Petricka, J.; Corcoran, D.L.; Li, S.; Winter, C.M.; Carda, A.; Benfey, P.N.; Ohler, U.; Megraw, M. Paired-end Analysis of Transcription Start Sites in Arabidopsis Reveals Plant-Specific Promoter Signatures. Plant Cell 2014, 26, 2746–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.Y.; Yoshioka, Y.; Hyakumachi, M.; Obokata, J. Characteristics of core promoter types with respect to gene structure and expression in Arabidopsis thaliana. DNA Res. 2011, 18, 333–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, N.; Sarkar, S.; Acharya, S.; Maiti, I.B. Synthetic promoters in planta. Planta 2015, 242, 1077–1094. [Google Scholar] [CrossRef]
- Shrestha, A.; Khan, A.; Dey, N. cis–trans Engineering: Advances and Perspectives on Customized Transcriptional Regulation in Plants. Mol. Plant 2018, 11, 886–898. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Kim, W.-C. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. Front. Plant Sci. 2019, 10, 1433. [Google Scholar] [CrossRef]
- Odell, J.T.; Nagy, F.; Chua, N.H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 1985, 313, 810–812. [Google Scholar] [CrossRef]
- Ranjan, R.; Patro, S.; Kumari, S.; Kumar, D.; Dey, N.; Maiti, I.B. Efficient chimeric promoters derived from full-length and sub-genomic transcript promoters of Figwort mosaic virus (FMV). J. Biotechnol. 2011, 152, 58–62. [Google Scholar] [CrossRef]
- Acharya, S.; Ranjan, R.; Pattanaik, S.; Maiti, I.B.; Dey, N. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences. Planta 2014, 239, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Al-Kaff, N.S.; Kreike, M.M.; Covey, S.N.; Pitcher, R.; Page, A.M.; Dale, P.J. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nat. Biotechnol. 2000, 18, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Zhang, C.; Harrison, M.; Wang, Z.-Y. Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol. Breed. 2005, 15, 221–231. [Google Scholar] [CrossRef]
- Han, Y.; Kim, Y.; Hwang, O.; Kim, J.I. Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Rep. 2015, 34, 265–275. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, K.; Ding, Z.; He, Q.; Li, W.; Zhu, S.; Cheng, W.; Zhang, K.; Li, K. Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnol. 2018, 18, 59. [Google Scholar] [CrossRef]
- Vysotskii, D.A.; Strelnikova, S.R.; Efremova, L.N.; Vetchinkina, E.M.; Babakov, A.V.; Komakhin, R.A. Structural and functional analysis of new plant promoter pro-SmAMP1 from Stellaria media. Russ. J. Plant Physiol. 2016, 63, 663–672. [Google Scholar] [CrossRef]
- Komakhin, R.A.; Vysotskii, D.A.; Shukurov, R.R.; Voblikova, V.D.; Komakhina, V.V.; Strelnikova, S.R.; Vetchinkina, E.M.; Babakov, A.V. Novel strong promoter of antimicrobial peptides gene pro-SmAMP2 from chickweed (Stellaria media). BMC Biotechnol. 2016, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Cazzonelli, C.I.; McCallum, E.J.; Lee, R.; Botella, J.R. Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Res. 2005, 14, 941–967. [Google Scholar] [CrossRef]
- Madzharova, N.V.; Kazakova, K.A.; Strelnikova, S.R.; Snycheva, O.A.; Vetchinkina, E.M.; Efremova, L.N.; Vysotskii, D.A.; Babakov, A.V.; Komakhin, R.A. Promoters pro-SmAMP1 and pro-SmAMP2 from Wild Plant Stellaria media for the Biotechnology of Dicotyledons. Russ. J. Plant Physiol. 2018, 65, 750–761. [Google Scholar] [CrossRef]
- Kumar, D.; Patro, S.; Ghosh, J.; Das, A.; Maiti, I.B.; Dey, N. Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement. Gene 2012, 503, 36–47. [Google Scholar] [CrossRef]
- Bhullar, S.; Datta, S.; Advani, S.; Chakravarthy, S.; Gautam, T.; Pental, D.; Burma, P.K. Functional analysis of cauliflower mosaic virus 35S promoter: Re-evaluation of the role of subdomains B5, B4 and B2 in promoter activity. Plant Biotechnol. J. 2007, 5, 696–708. [Google Scholar] [CrossRef] [PubMed]
- Joern, J.M. DNA shuffling. In Directed Evolution Library Creation; Arnold, F.H., Georgiou, G., Eds.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2003; pp. 85–89. [Google Scholar]
- Vogl, T.; Ruth, C.; Pitzer, J.; Kickenweiz, T.; Glieder, A. Synthetic core promoters for Pichia pastoris. ACS Synth. Biol. 2014, 3, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Stewart, C.N. Plant synthetic promoters and transcription factors. Curr. Opin. Biotechnol. 2016, 37, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jameel, A.; Noman, M.; Liu, W.; Ahmad, N.; Wang, F.; Li, X.; Li, H. Tinkering Cis Motifs Jigsaw Puzzle Led to Root-Specific Drought-Inducible Novel Synthetic Promoters. Int. J. Mol. Sci. 2020, 21, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; McHale, L.K.; Finer, J.J. Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters. Plant Biotechnol. J. 2019, 17, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.-M.; Kallam, K.; Tidd, H.; Gendarini, G.; Salzman, A.; Patron, N.J. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res. 2020. [Google Scholar] [CrossRef]
- Shukurov, R.R.; Voblikova, V.D.; Nikonorova, A.K.; Komakhin, R.A.; Komakhina, V.V.; Egorov, T.A.; Grishin, E.A.; Babakov, A.V. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens. Transgenic Res. 2012, 21, 313–325. [Google Scholar] [CrossRef]
- Zhang, X.; Henriques, R.; Lin, S.S.; Niu, Q.W.; Chua, N.H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef]
- Satoh, R.; Nakashima, K.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. ACTCAT, a Novel cis-Acting Element for Proline- and Hypoosmolarity-Responsive Expression of the ProDH Gene Encoding Proline Dehydrogenase in Arabidopsis. Plant Physiol. 2002, 130, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, R.A.; Burgess, S.M.; Hirsh, D. beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. USA 1986, 83, 8447–8451. [Google Scholar] [CrossRef] [Green Version]
- Komakhin, R.A.; Komakhina, V.V.; Milyukova, N.A.; Fadina, O.A.; Goldenkova-Pavlova, I.V.; Zhuchenko, A.A. Transgenic tomato plants expressing recA and NLS-recA-licBM3 genes as a model for studying meiotic recombination. Russ. J. Genet. 2010, 46, 1440–1448. [Google Scholar] [CrossRef]
- Morioka, M.S.; Kawaji, H.; Nishiyori-Sueki, H.; Murata, M.; Kojima-Ishiyama, M.; Carninci, P.; Itoh, M. Cap Analysis of Gene Expression (CAGE): A Quantitative and Genome-Wide Assay of Transcription Start Sites. In Bioinformatics for Cancer Immunotherapy; Boegel, S., Ed.; Methods in Molecular Biology, 2120; Humana: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higo, K.; Ugawa, Y.; Iwamoto, M.; Korenaga, T. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 1999, 27, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Kiran, K.; Ansari, S.A.; Srivastava, R.; Lodhi, N.; Chaturvedi, C.P.; Sawant, S.V.; Tuli, R. The TATA-box sequence in the basal promoter contributes to determining light-dependent gene expression in plants. Plant Physiol. 2006, 142, 364–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piechulla, B.; Merforth, N.; Rudolph, B. Identification of tomato Lhc promoter regions necessary for circadian expression. Plant Mol. Biol. 1998, 38, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Ishige, F.; Takaichi, M.; Foster, R.; Chua, N.H.; Oeda, K. A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J. 1999, 18, 443–448. [Google Scholar] [CrossRef]
- Ebert, P.R.; Ha, S.B.; An, G. Identification of an essential upstream element in the nopaline synthase promoter by stable and transient assays. Proc. Natl. Acad. Sci. USA 1987, 84, 5745–5749. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; An, K.; Edward, G.E.; An, G. Functional role of CAAT box element of the nopaline synthase (nos) promoter. J. Plant Biol. 1999, 42, 181–185. [Google Scholar] [CrossRef]
- Rushton, P.J. What Have We Learned About Synthetic Promoter Construction? In Plant Synthetic Promoters; Hehl, R., Ed.; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; pp. 1–13. [Google Scholar]
- Wever, W.; McCallum, E.J.; Chakravorty, D.; Cazzonelli, C.I.; Botella, J.R. The 5′ untranslated region of the VR-ACS1 mRNA acts as a strong translational enhancer in plants. Transgenic Res. 2010, 19, 667–674. [Google Scholar] [CrossRef]
- Kabardaeva, K.V.; Tyurin, A.A.; Pavlenko, O.S.; Gra, O.A.; Deyneko, I.V.; Kouchoro, F.; Mustafaev, O.N.; Goldenkova-Pavlova, I.V. Fine Tuning of Translation: A Complex Web of Mechanisms and Its Relevance to Plant Functional Genomics and Biotechnology. Russ. J. Plant Physiol. 2019, 66, 835–849. [Google Scholar] [CrossRef]
- Oono, Y.; Seki, M.; Nanjo, T.; Narusaka, M.; Fujita, M.; Satoh, R.; Satou, M.; Sakurai, T.; Ishida, J.; Akiyama, K.; et al. Monitoring Expression Profiles of Arabidopsis Gene Expression During Rehydration Process After Dehydration Using Ca 7000 Full-Length cDNA Microarray. Plant J. 2003, 34, 868–887. [Google Scholar] [CrossRef] [Green Version]
- Lao, Y.M.; Xiao, L.; Luo, L.X.; Jiang, J.G. Hypoosmotic expression of Dunaliella bardawil ζ-carotene desaturase is attributed to a hypoosmolarity-responsive element different from other key carotenogenic genes. Plant Physiol. 2014, 165, 359–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yi, Q.; Cao, Y.; Wei, B.; Zheng, L.; Xiao, Q.; Xie, Y.; Gu, Y.; Li, Y.; Huang, H.; et al. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters. J. Exp. Bot. 2016, 67, 1327–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, S. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 2004, 11, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, S.N.; Brown, C.R.; Harvey, S.; Boeger, H.; Elmlund, H.; Elmlund, D. The TAFs of TFIID Bind and Rearrange the Topology of the TATA-Less RPS5 Promoter. Int. J. Mol. Sci. 2019, 20, 3290. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, K.; Satoh, R.; Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A Gene Encoding Proline Dehydrogenase Is Not Only Induced by Proline and Hypoosmolarity, but Is Also Developmentally Regulated in the Reproductive Organs of Arabidopsis. Plant Physiol. 1998, 118, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Phang, J.M. The regulatory functions of proline and A1-pyrroline-5-carboxylic acid. Curr. Top. Cell. Regul. 1985, 25, 91–132. [Google Scholar] [CrossRef]
- Hellmann, H.; Funk, D.; Rentsch, D.; Frommer, W.B. Hypersensivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 2000, 122, 357–367. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Meon, S.; Fisher, J.M.; Wallace, H.R. Changes in free proline following infection of plants with either Meloidogyne javanica or Agrobacterium tumefaciens. Physiol. Plant Pathol. 1978, 12, 251–256. [Google Scholar] [CrossRef]
- Li, W.; Lu, P.; Xie, H.; Li, G.; Wang, J.; Guo, D.; Liang, X. Effects of glyphosate on soybean metabolism in strains bred for glyphosate-resistance. Physiol. Mol. Biol. Plants 2019, 25, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Tasho, R.P.; Shin, W.T.; Cho, J.Y. Acclimatization of Pisum sativum L., grown in soil contaminated with veterinary antibiotics, an attribute of dose hormetic response of root metabolites. Sci. Total Environ. 2018, 635, 364–374. [Google Scholar] [CrossRef] [PubMed]
Genetic Construct (pCAMBIA2300) | Number of Shoots in Growth Medium with 350 mg/L Kanamycin | |||
---|---|---|---|---|
Total | Per Explant | |||
Total | Rooted | |||
Promoter | Deletion Variant, bp | |||
pro-SmAMP1 | −425 | 248 | 5.5 ± 0.9 | 2.4 ± 0.6 |
−373 | 194 | 4.3 ± 0.7 | 1.7 ± 0.4 | |
−323 | 266 | 5.9 ± 1.2 | 2.1 ± 0.6 | |
−307 | 180 | 4.0 ± 0.6 | 1.6 ± 0.4 | |
−273 | 249 | 5.5 ± 0.5 | 2.5 ± 0.4 | |
−220 | 293 | 6.5 ± 0.8 | 3.3 ± 0.5 | |
−170 | 239 | 5.3 ± 0.9 | 2.3 ± 0.6 | |
−102 | 81 | 1.8 ± 0.6 | 1.5 ± 0.3 | |
pro-SmAMP2 | −438 | 523 | 11.6 ± 1.3 | 6.2 ± 0.9 |
−426 | 796 | 17.7 ± 1.7 | 13.5 ± 1.4 * | |
−374 | 478 | 10.6 ± 1.2 | 6.8 ± 0.9 * | |
−324 | 378 | 8.4 ± 1.0 | 3.8 ± 0.5 | |
−308 | 262 | 5.8 ± 1.5 | 3.7 ± 1.0 | |
−274 | 339 | 7.5 ± 1.0 | 3.8 ± 0.7 | |
−222 | 393 | 8.7 ± 0.9 | 3.9 ± 0.5 | |
−172 | 370 | 8.2 ± 0.8 | 5.2 ± 0.7 * | |
−104 | 330 | 7.3 ± 0.9 | 4.7 ± 0.6 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremova, L.N.; Strelnikova, S.R.; Gazizova, G.R.; Minkina, E.A.; Komakhin, R.A. A Synthetic Strong and Constitutive Promoter Derived from the Stellaria media pro-SmAMP1 and pro-SmAMP2 Promoters for Effective Transgene Expression in Plants. Genes 2020, 11, 1407. https://doi.org/10.3390/genes11121407
Efremova LN, Strelnikova SR, Gazizova GR, Minkina EA, Komakhin RA. A Synthetic Strong and Constitutive Promoter Derived from the Stellaria media pro-SmAMP1 and pro-SmAMP2 Promoters for Effective Transgene Expression in Plants. Genes. 2020; 11(12):1407. https://doi.org/10.3390/genes11121407
Chicago/Turabian StyleEfremova, Larisa N., Svetlana R. Strelnikova, Guzel R. Gazizova, Elena A. Minkina, and Roman A. Komakhin. 2020. "A Synthetic Strong and Constitutive Promoter Derived from the Stellaria media pro-SmAMP1 and pro-SmAMP2 Promoters for Effective Transgene Expression in Plants" Genes 11, no. 12: 1407. https://doi.org/10.3390/genes11121407