The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Subjects
2.2. Clinical Examination and Laboratory Methods
2.3. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Haugen, S.; Casserly, I.P.; Regensteiner, J.G.; Hiatt, W.R. Risk assessment in the patient with established peripheral arterial disease. Vasc. Med. 2007, 12, 343–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minar, E. Peripheral arterial occlusive disease. Vasa 2007, 36, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Kullo, I.J.; Turner, S.T.; Kardia, S.L.; Mosley, T.H., Jr.; Boerwinkle, E.; Andrade, M.D. A genome-wide linkage scan for ankle–brachial index in African American and non-Hispanic white subjects participating in the GENOA study. Atherosclerosis 2006, 187, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Murabito, J.M.; Guo, C.Y.; Fox, C.S.; D’Agostino, R.B. Heritability of the ankle–brachial index: The Framingham Offspring study. Am. J. Epidemiol. 2006, 164, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Kullo, I.J.; Leeper, N.J. The genetic basis of peripheral arterial disease: Current knowledge, challenges, and future directions. Circ. Res. 2015, 116, 1551–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacombe, C.; Mayeux, P. The molecular biology of erythropoietin. Nephrol. Dial. Transpl. 1999, 14, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Jelkmann, W. Control of erythropoietin gene expression and its use in medicine. Methods Enzymol. 2007, 435, 179–197. [Google Scholar]
- Watanabe, D.; Suzuma, K.; Matsui, S.; Kurimoto, M.; Kiryu, J.; Kita, M.; Suzuma, I.; Ohashi, H.; Ojima, T.; Murakami, T.; et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med. 2005, 353, 782–792. [Google Scholar] [CrossRef]
- Ribatti, D. Erythropoietin and tumor angiogenesis. Stem Cells 2010, 19, 1–4. [Google Scholar] [CrossRef]
- Hakimzadeh, N.; Verberne, H.J.; Siebes, M.; Piek, J.J. The future of collateral artery research. Curr. Cardiol. Rev. 2014, 10, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Faber, J.E.; Chilian, W.M.; Deindl, E.; van Royen, N.; Simons, M. A brief etymology of the collateral circulation. Arter. Thromb. Vasc. Biol. 2014, 34, 1854–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troidl, K.; Schaper, W. Arteriogenesis versus angiogenesis in peripheral artery disease. Diabetes Metab. Res. Rev. 2012, 28, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Guo, Z.; Mi, L.; Wang, G. Serum erythropoietin: A useful biomarker for coronary collateral development and potential target for therapeutic angiogenesis among the patients with coronary chronic total occlusion. Biomarkers 2013, 18, 343–348. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, Z.; Patel, S.; Chen, H.; Gibbs, D.; Yang, X.; Hau, V.S.; Kaminoh, Y.; Harmon, J.; Pearson, E.; et al. Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications. Proc. Natl. Acad. Sci. USA 2008, 105, 6998–7003. [Google Scholar] [CrossRef] [Green Version]
- Amanzada, A.; Goralczyk, A.D.; Reinhardt, L.; Moriconi, F.; Cameron, S.; Mihm, S. Erythropoietin rs1617640 G allele associates with an attenuated rise of serum erythropoietin and a marked decline of hemoglobin in hepatitis C patients undergoing antiviral therapy. BMC Infect. Dis. 2014, 14, 503. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.H.; Raffield, L.M.; Mousas, A.; Sakaue, S.; Huffman, J.E.; Moscati, A.; Trivedi, B.; Jiang, T.; Akbari, P.; Vuckovic, D.; et al. Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell 2020, 182, 1198–1213. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Fu, Y.Y.; Chen, Z.; Hu, Y.Y.; Shen, J. Gene-gene interaction of erythropoietin gene polymorphisms and diabetic retinopathy in Chinese Han. Exp. Biol. Med. 2016, 241, 1524–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khabour, O.F.; Bani-Ahmad, M.A.; Hammash, N.M. Association between polymorphisms in erythropoietin gene and upper limit haematocrit levels among regular blood donors. Transfus. Clin. Biol. 2012, 19, 353–357. [Google Scholar] [CrossRef]
- Kästner, A.; Grube, S.; El-Kordi, A.; Stepniak, B.; Friedrichs, H.; Sargin, D.; Schwitulla, J.; Begemann, M.; Giegling, I.; Miskowiak, K.W.; et al. Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia. Mol. Med. 2012, 18, 1029–1040. [Google Scholar] [CrossRef]
- Bahadori, B.; Uitz, E.; Mayer, A.; Harauer, J.; Dam, K.; Truschnig-Wilders, M.; Pilger, E.; Renner, W. Polymorphisms of the hypoxia-inducible factor 1 gene and peripheral artery disease. Vasc. Med. 2010, 15, 371–374. [Google Scholar] [CrossRef]
- Bahadori, B.; Uitz, E.; Dehchamani, D.; Pilger, E.; Renner, W. The fibrinogen gamma 10034C>T polymorphism is not associated with Peripheral Arterial Disease. Thromb. Res. 2010, 126, 350–352. [Google Scholar] [CrossRef]
- Sanchez, L.A.; Veith, F.J. Diagnosis and treatment of chronic lower extremity ischemia. Vasc. Med. 1998, 3, 291–299. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications part 1: Diagnosis and classification of diabetes mellitus—Provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Szkandera, J.; Absenger, G.; Stotz, M.; Weissmueller, M.; Winder, T.; Langsenlehner, T.; Samonigg, H.; Renner, W.; Schippinger, W.; Gerger, A. The functional polymorphism of erythropoietin gene rs1617640 G>T is not associated with susceptibility and clinical outcome of early-stage breast cancer. Anticancer Res. 2012, 32, 3473–3478. [Google Scholar]
- Yuksel, I.O.; Cagirci, G.; Koklu, E.; Yilmaz, A.; Kucukseymen, S.; Ellidag, H.Y.; Cay, S.; Yilmaz, N.; Arslan, S. Erythropoietin stimulates the coronary collateral development in patients with coronary chronic total occlusion. Neth. Heart J. 2016, 24, 609–616. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Zhang, Y.; Wu, Y.; Zhou, F.; Qu, Y. Association of erythropoietin gene polymorphisms with retinopathy in a Chinese cohort with type 2 diabetes mellitus. Clin. Exp. Ophthalmol. 2015, 43, 544–549. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Boright, A.P.; Sun, L.; Canty, A.J.; Bull, S.B.; Klein, B.E.; Klein, R.; DCCT/EDIC Research Group; Paterson, A.D. The association of previously reported polymorphisms for microvascular complications in a meta-analysis of diabetic retinopathy. Hum. Genet. 2015, 134, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Van Ravenzwaaij, D.; Ioannidis, J.P.A. True and false positive rates for different criteria of evaluating statistical evidence from clinical trials. BMC Med. Res. Methodol. 2019, 19, 218. [Google Scholar] [CrossRef] [Green Version]
Specifications | PAD Patients (n = 945) | |
---|---|---|
Age, years | 68.4 ± 10.2 | |
Age at onset of PAD, years | 64.8 ± 11.1 | |
Male sex | 585 (61.9%) | |
Ever-smoker | 591 (62.5%) | |
Type 2 diabetes | 455 (48.1%) | |
Arterial hypertension | 635 (67.2%) | |
Hypercholesteremia | 653 (69.1%) | |
rs1617640 genotype | AA | 356 (37.7%) 433 (45.8%) 156 (16.5%) |
AC | ||
CC | ||
rs1617640 C-allele frequency | 0.394 |
Specifications | AA | AC | CC | p |
---|---|---|---|---|
n | 356 | 433 | 156 | - |
Age at onset of PAD, years | 66.0 ± 10.8 | 64.1 ± 11.1 | 64.0 ± 11.5 | 0.042 |
Male sex, n (%) | 227 (63.8) | 264 (61.0) | 94 (60.3) | 0.65 |
Fontaine stage II, n (%) Fontaine stage III–IV, n (%) | 253 (71.1) 103 (29.0) | 295 (68.1) 138 (31.9) | 111 (71.2) 45 (28.8) | 0.61 |
Concomitant coronary artery disease, n (%) | 92 (25.8) | 124 (28.6) | 41 (26.3) | 0.65 |
Type 2 diabetes mellitus, n (%) | 167 (46.9) | 212 (49.0) | 76 (48.7) | 0.84 |
Smoking, n (%) | 227 (63.8) | 265 (61.2) | 99 (63.5) | 0.74 |
Hemoglobin, g/dL | 13.3 ± 1.9 | 13.5 ± 1.7 | 13.7 ± 1.9 | 0.029 |
Hematocrit, % | 40.3 ± 5.4 | 41.2 ± 5.0 | 41.8 ± 5.4 | 0.006 |
Red blood cell count, T/L | 4.36 ± 0.57 | 4.47 ± 0.67 | 4.55 ± 0.59 | 0.003 |
Risk Factor | Regression Coefficient (95% Confidence Interval), Years | p |
---|---|---|
Male sex (yes/no) | −1.85 (−3.43–−0.7) | 0.022 |
Smoking history (ever/never) | −7.80 (−9.41–−6.18) | <0.001 |
EPO rs1617640 (number of C-alleles) | −1.28 (−0.35–−2.21) | 0.007 |
Type 2 diabetes (yes/no) | −0.25 (−1.62–1.12) | 0.72 |
Arterial hypertension (yes/no) | 1.72 (0.27–3.17) | 0.020 |
Hypercholesteremia (yes/no) | −1.78 (-3.25–−0.32) | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renner, W.; Kaiser, M.; Khuen, S.; Trummer, O.; Mangge, H.; Langsenlehner, T. The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease. Genes 2020, 11, 1305. https://doi.org/10.3390/genes11111305
Renner W, Kaiser M, Khuen S, Trummer O, Mangge H, Langsenlehner T. The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease. Genes. 2020; 11(11):1305. https://doi.org/10.3390/genes11111305
Chicago/Turabian StyleRenner, Wilfried, Melanie Kaiser, Sebastian Khuen, Olivia Trummer, Harald Mangge, and Tanja Langsenlehner. 2020. "The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease" Genes 11, no. 11: 1305. https://doi.org/10.3390/genes11111305
APA StyleRenner, W., Kaiser, M., Khuen, S., Trummer, O., Mangge, H., & Langsenlehner, T. (2020). The Erythropoetin rs1617640 Gene Polymorphism Associates with Hemoglobin Levels, Hematocrit and Red Blood Cell Count in Patients with Peripheral Arterial Disease. Genes, 11(11), 1305. https://doi.org/10.3390/genes11111305