Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Housing Conditions
2.3. Behavioral Procedures
2.4. Sucrose Consumption
2.5. Open Field
2.6. Elevated Plus-Maze (EPM)
2.7. Brain Tissue Collection
2.8. RNA Extraction and Quantitative Real-Time PCR Gene Expression Analysis
2.9. Protein Extraction and Western Blot Analysis
2.10. Statistical Analysis
3. Results
3.1. One Month of EE Normalized the Depression- and Anxiety-Like Behavior in SERT−/− Rats
3.2. The EE Improved Neuroplastic Mechanisms in SERT−/− Rats
3.3. The Reduction of Spine Markers Expression in SERT−/− Rats Is Normalized by EE
3.4. GABAergic System Alterations of SERT−/− Rats Are Restored by the EE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caspi, A.; Hariri, A.R.; Holmes, A.; Uher, R.; Moffitt, T.E. Genetic Sensitivity to the Environment: The Case of the Serotonin Transporter Gene and Its Implications for Studying Complex Diseases and Traits. Focus (Madison) 2010, 8, 398–416. [Google Scholar] [CrossRef]
- Murphy, D.L.; Lerner, A.; Rudnick, G.; Lesch, K.-P. Serotonin transporter: Gene, genetic disorders, and pharmacogenetics. Mol. Interv. 2004, 4, 109–123. [Google Scholar] [CrossRef]
- Mohammad, F.; Ho, J.; Woo, J.H.; Lim, C.L.; Poon, D.J.J.; Lamba, B.; Claridge-Chang, A. Concordance and incongruence in preclinical anxiety models: Systematic review and meta-analyses. Neurosci. Biobehav. Rev. 2016, 68, 504–529. [Google Scholar] [CrossRef] [Green Version]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 2003, 301, 386–389. [Google Scholar] [CrossRef]
- Karg, K.; Burmeister, M.; Shedden, K.; Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry 2011, 68, 444–454. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, C.F.; Palanisamy, S.K.A.; Glyde, N.S.; Dillingham, P.W.; Agnew, L.L. An update on the interaction between the serotonin transporter promoter variant (5-HTTLPR), stress and depression, plus an exploration of non-confirming findings. Behav. Brain Res. 2014, 273, 89–105. [Google Scholar] [CrossRef]
- Bleys, D.; Luyten, P.; Soenens, B.; Claes, S. Gene-environment interactions between stress and 5-HTTLPR in depression: A meta-analytic update. J. Affect. Disord. 2018, 226, 339–345. [Google Scholar] [CrossRef]
- Risch, N.; Herrell, R.; Lehner, T.; Liang, K.Y.; Eaves, L.; Hoh, J.; Griem, A.; Kovacs, M.; Ott, J.; Merikangas, K.R. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: A meta-analysis. JAMA 2009, 301, 2462–2471. [Google Scholar] [CrossRef] [Green Version]
- Culverhouse, R.C.; Saccone, N.L.; Bierut, L.J. The state of knowledge about the relationship between 5-HTTLPR, stress, and depression. J. Affect. Disord. 2018, 228, 205–206. [Google Scholar] [CrossRef]
- Munafò, M.R.; Durrant, C.; Lewis, G.; Flint, J. Gene × Environment Interactions at the Serotonin Transporter Locus. Biol. Psychiatry 2009, 65, 211–219. [Google Scholar] [CrossRef]
- Homberg, J.R.; Lesch, K.P. Looking on the bright side of serotonin transporter gene variation. Biol. Psychiatry 2011, 69, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.; Beevers, C.G. Differential sensitivity to the environment: Contribution of cognitive biases and genes to psychological wellbeing. Mol. Psychiatry 2016, 21, 1657–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, E.; Zougkou, K.; Ridgewell, A.; Garner, K. The serotonin transporter gene alters sensitivity to attention bias modification: Evidence for a plasticity gene. Biol. Psychiatry 2011, 70, 1049–1054. [Google Scholar] [CrossRef] [Green Version]
- Belsky, J.; Jonassaint, C.; Pluess, M.; Stanton, M.; Brummett, B.; Williams, R. Vulnerability genes or plasticity genes? Mol. Psychiatry 2009, 14, 746–754. [Google Scholar] [CrossRef]
- Kaufman, J.; Yang, B.Z.; Douglas-Palumberi, H.; Houshyar, S.; Lipschitz, D.; Krystal, J.H.; Gelernter, J. Social supports and serotonin transporter gene moderate depression in maltreated children. Proc. Natl. Acad. Sci. USA 2004, 101, 17316–17321. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.; Notterman, D.; Brooks-Gunn, J.; Hobcraft, J.; Garfinkel, I.; Jaeger, K.; Kotenko, I.; McLanahan, S. Role of mother’s genes and environment in postpartum depression. Proc. Natl. Acad. Sci. USA 2011, 108, 8189–8193. [Google Scholar] [CrossRef] [Green Version]
- Li, J.J.; Berk, M.S.; Lee, S.S. Differential susceptibility in longitudinal models of gene-environment interaction for adolescent depression. Dev. Psychopathol. 2013, 25, 991–1003. [Google Scholar] [CrossRef]
- Starr, L.R.; Hammen, C.; Brennan, P.A.; Najman, J.M. Relational security moderates the effect of serotonin transporter gene polymorphism (5-HTTLPR) on stress generation and depression among adolescents. J. Abnorm. Child Psychol. 2013, 41, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Pluess, M. Vantage Sensitivity: Environmental Sensitivity to Positive Experiences as a Function of Genetic Differences. J. Pers. 2017, 85, 38–50. [Google Scholar] [CrossRef]
- Kiser, D.; SteemerS, B.; Branchi, I.; Homberg, J.R. The reciprocal interaction between serotonin and social behaviour. Neurosci. Biobehav. Rev. 2012, 36, 786–798. [Google Scholar] [CrossRef]
- Olivier, J.D.A.; Van Der Hart, M.G.C.; Van Swelm, R.P.L.; Dederen, P.J.; Homberg, J.R.; Cremers, T.; Deen, P.M.T.; Cuppen, E.; Cools, A.R.; Ellenbroek, B.A. A study in male and female 5-HT transporter knockout rats: An animal model for anxiety and depression disorders. Neuroscience 2008, 152, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Schipper, P.; Hiemstra, M.; Bosch, K.; Nieuwenhuis, D.; Adinolfi, A.; Glotzbach, S.; Borghans, B.; Lopresto, D.; Fernández, G.; Klumpers, F.; et al. The association between serotonin transporter availability and the neural correlates of fear bradycardia. Proc. Natl. Acad. Sci. USA 2019, 51, 25941–25947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidotti, G.; Calabrese, F.; Auletta, F.; Olivier, J.; Racagni, G.; Homberg, J.; Riva, M.A. Developmental Influence of the Serotonin Transporter on the Expression of Npas4 and GABAergic Markers: Modulation by Antidepressant Treatment. Neuropsychopharmacology 2012, 37, 746–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabrese, F.; Guidotti, G.; Middelman, A.; Racagni, G.; Homberg, J.; Riva, M.A. Lack of Serotonin Transporter Alters BDNF Expression in the Rat Brain During Early Postnatal Development. Mol. Neurobiol. 2013, 48, 244–256. [Google Scholar] [CrossRef]
- Brivio, P.; Homberg, J.R.; Riva, M.A.; Calabrese, F. Alterations of Glutamatergic Markers in the Prefrontal Cortex of Serotonin Transporter Knockout Rats: A Developmental Timeline. Cell. Mol. Neurobiol. 2019, 39, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Schipper, P.; Brivio, P.; De Leest, D.; Madder, L.; Asrar, B.; Rebuglio, F.; Verheij, M.M.; Kozicz, T.; Riva, M.A.; Calabrese, F.; et al. Impaired fear extinction recall in serotonin transporter knockout rats is transiently alleviated during adolescence. Brain Sci. 2019, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Roversi, K.; Buizza, C.; Brivio, P.; Calabrese, F.; Verheij, M.M.; Antoniazzi, C.T.; Burger, M.E.; Riva, M.A.; Homberg, J.R. Neonatal Tactile Stimulation Alters Behaviors in Heterozygous Serotonin Transporter Male Rats: Role of the Amygdala. Front. Behav. Neurosci. 2020, 14, 142. [Google Scholar] [CrossRef] [PubMed]
- Nonkes, L.J.P.; de Pooter, M.; Homberg, J.R. Behavioural therapy based on distraction alleviates impaired fear extinction in male serotonin transporter knockout rats. J. Psychiatry Neurosci. 2012, 37, 224. [Google Scholar] [CrossRef] [Green Version]
- Fava, M. Diagnosis and definition of treatment-resistant depression. Biol. Psychiatry 2003, 53, 649–659. [Google Scholar] [CrossRef]
- Serretti, A.; Kato, M.; de Ronchi, D.; Kinoshita, T. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol. Psychiatry 2007, 12, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, S.; Fabbri, C.; Serretti, A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur. Neuropsychopharmacol. 2012, 22, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Farah, W.H.; Alsawas, M.; Mainou, M.; Alahdab, F.; Farah, M.H.; Ahmed, A.T.; Mohamed, E.A.; Almasri, J.; Gionfriddo, M.R.; Castaneda-Guarderas, A.; et al. Non-pharmacological treatment of depression: A systematic review and evidence map. Evid. Based Med. 2016, 21, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shan, W. Pharmacological and non-pharmacological treatments for major depressive disorder in adults: A systematic review and network meta-analysis. Psychiatry Res. 2019, 281, 112595. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Chen, Y.; Chang, J.; Huang, Y.; Cai, M.; Zhang, M. Environmental enrichment reduces adolescent anxiety- and depression-like behaviors of rats subjected to infant nerve injury. J. Neuroinflamm. 2018, 15, 262. [Google Scholar] [CrossRef]
- Thamizhoviya, G.; Vanisree, A.J. Enriched environment modulates behavior, myelination and augments molecules governing the plasticity in the forebrain region of rats exposed to chronic immobilization stress. Metab. Brain Dis. 2019, 34, 875–887. [Google Scholar] [CrossRef]
- Speisman, R.B.; Kumar, A.; Rani, A.; Pastoriza, J.M.; Severance, J.E.; Foster, T.C.; Ormerod, B.K. Environmental enrichment restores neurogenesis and rapid acquisition in aged rats. Neurobiol. Aging 2013, 34, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Homberg, J.R.; Schubert, D.; Asan, E.; Aron, E.N. Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci. Biobehav. Rev. 2016, 71, 472–483. [Google Scholar] [CrossRef]
- Rogers, J.; Li, S.; Lanfumey, L.; Hannan, A.J.; Renoir, T. Environmental enrichment reduces innate anxiety with no effect on depression-like behaviour in mice lacking the serotonin transporter. Behav. Brain Res. 2017, 332, 355–361. [Google Scholar] [CrossRef]
- Brivio, P.; Sbrini, G.; Riva, M.A.; Calabrese, F. Acute Stress Induces Cognitive Improvement in the Novel Object Recognition Task by Transiently Modulating Bdnf in the Prefrontal Cortex of Male Rats. Cell. Mol. Neurobiol. 2020, 40, 1037–1047. [Google Scholar] [CrossRef] [Green Version]
- Kolb, B.; Mychasiuk, R.; Muhammad, A.; Li, Y.; Frost, D.O.; Gibb, R. Experience and the developing prefrontal cortex. Proc. Natl. Acad. Sci. USA 2012, 109 (Suppl. 2), 17186–17193. [Google Scholar] [CrossRef] [Green Version]
- Smits, B.M.G.; Mudde, J.B.; van de Belt, J.; Verheul, M.; Olivier, J.; Homberg, J.; Guryev, V.; Cools, A.R.; Ellenbroek, B.A.; Plasterk, R.H.; et al. Generation of gene knockouts and mutant models in the laboratory rat by ENU-driven target-selected mutagenesis. Pharm. Genom. 2006, 16, 159–169. [Google Scholar] [CrossRef]
- Willner, P.; Towell, A.; Sampson, D.; Sophokleous, S.; Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987, 93, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 6th ed.; Elsevier Academic Press: New York, NY, USA, 2007. [Google Scholar]
- Sbrini, G.; Brivio, P.; Peeva, P.M.; Todiras, M.; Bader, M.; Alenina, N.; Calabrese, F. The Absence of Serotonin in the Brain Alters Acute Stress Responsiveness by Interfering With the Genomic Function of the Glucocorticoid Receptors. Front. Cell. Neurosci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sbrini, G.; Brivio, P.; Peeva, P.M.; Todiras, M.; Bader, M.; Alenina, N.; Calabrese, F. Centella asiatica l. Phytosome improves cognitive performance by promoting bdnf expression in rat prefrontal cortex. Nutrients 2020, 12, 355. [Google Scholar] [CrossRef] [Green Version]
- Kalueff, A.V.; Nutt, D.J. Role of GABA in anxiety and depression. Depress. Anxiety 2007, 24, 495–517. [Google Scholar] [CrossRef]
- Molteni, R.; Cattaneo, A.; Calabrese, F.; Macchi, F.; Olivier, J.D.; Racagni, G.; Ellenbroek, B.A.; Gennarelli, M.; Riva, M.A. Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol. Dis. 2010, 37, 747–755. [Google Scholar] [CrossRef]
- Calabrese, F.; Molteni, R.; Cattaneo, A.; Macchi, F.; Racagni, G.; Gennarelli, M.; Ellenbroek, B.A.; Riva, M.A. Long-Term Duloxetine Treatment Normalizes Altered Brain-Derived Neurotrophic Factor Expression in Serotonin Transporter Knockout Rats through the Modulation of Specific Neurotrophin Isoforms. Mol. Pharmacol. 2010, 77, 846–853. [Google Scholar] [CrossRef] [Green Version]
- Golebiowska, J.; Hołuj, M.; Potasiewicz, A.; Piotrowska, D.; Kuziak, A.; Popik, P.; Homberg, J.R.; Nikiforuk, A. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Su, C.H.; Chuang, H.C.; Hong, C.J. Physical exercise prevents mice from L-Kynurenine-induced depression-like behavior. Asian J. Psychiatry 2020, 48, 101894. [Google Scholar] [CrossRef] [PubMed]
- Patki, G.; Li, L.; Allam, F.; Solanki, N.; Dao, A.T.; Alkadhi, K.; Salim, S. Moderate treadmill exercise rescues anxiety and depression-like behavior as well as memory impairment in a rat model of posttraumatic stress disorder. Physiol. Behav. 2014, 130, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.E.; Xue, Y.; Sakata, K. The effect of enriched environment across ages: A study of anhedonia and BDNF gene induction. Genes Brain Behav. 2018, 17, e12485. [Google Scholar] [CrossRef] [PubMed]
- An, J.J.; Gharami, K.; Liao, G.Y.; Woo, N.H.; Lau, A.G.; Vanevski, F.; Torre, E.R.; Jones, K.R.; Feng, Y.; Lu, B.; et al. Distinct Role of Long 3′ UTR BDNF mRNA in Spine Morphology and Synaptic Plasticity in Hippocampal Neurons. Cell 2008, 134, 175–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, M.; Xie, Y.; An, J.J.; Stryker, M.P.; Xu, B. Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation. J. Neurosci. 2012, 32, 4790–4802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orefice, L.L.; Waterhouse, E.G.; Partridge, J.G.; Lalchandani, R.R.; Vicini, S.; Xu, B. Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J. Neurosci. 2013, 33, 11618–11632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Sahir, N.; Murakami, S.; Luellen, B.A.; Earnheart, J.C.; Lal, R.; Kim, J.Y.; Song, H.; Luscher, B. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology 2015, 88, 171–179. [Google Scholar] [CrossRef] [Green Version]
- McEwen, B.S. Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain. Metabolism 2005, 54, 20–23. [Google Scholar] [CrossRef]
- Duman, C.H.; Duman, R.S. Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci. Lett. 2014, 601, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Norrholm, S.D.; Ouimet, C.C. Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 2001, 42, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Rodriguez, M.; Goodman, P.; Illic, M.; Wu, C.; Markram, H. Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J. Physiol. 2005, 567, 401–413. [Google Scholar] [CrossRef]
- de Blas, A.L. Brain GABAA receptors studied with subunit-specific antibodies. Mol. Neurobiol. 1996, 12, 55–71. [Google Scholar] [CrossRef]
- Crestani, F.; Lorez, M.; Baer, K.; Essrich, C.; Benke, D.; Laurent, J.P.; Belzung, C.; Fritschy, J.M.; Lüscher, B.; Mohler, H. Decreased GABA(A)-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat. Neurosci. 1999, 2, 833–839. [Google Scholar] [CrossRef] [PubMed]
- van de Velde, S.; Bracke, P.; Levecque, K. Gender differences in depression in 23 European countries. Cross-national variation in the gender gap in depression. Soc. Sci. Med. 2010, 71, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Chourbaji, S.; Hörtnagl, H.; Molteni, R.; Riva, M.A.; Gass, P.; Hellweg, R. The impact of environmental enrichment on sex-specific neurochemical circuitries—Effects on brain-derived neurotrophic factor and the serotonergic system. Neuroscience 2012, 220, 267–276. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer | Probe |
---|---|---|---|
Total Bdnf | AAGTCTGCATTACATTCCTCGA | GTTTTCTGAAAGAGGGACAGTTTAT | TGTGGTTTGTTGCCGTTGCCAAG |
Psd95 | CAAGAAATACCGCTACCAAGATG | CCCTCTGTTCCATTCACCTG | TCAACACGGACACCCTAGAAGCC |
Cdc42 | AAGGCTGTCAAGTATGTGGAG | GCTCTGGAGATGCGTTCATAG | CCTGCGGCTCTTCTTCGGTTCT |
Gad65 | TGAGGGAAATCATTGGCTGG | TCCCCTTTTCCTTGACTTCTG | TGCCATCTCCAACATGTACGCCA |
Gad67 | ATACTTGGTGTGGCGTAGC | AGGAAAGCAGGTTCTTGGAG | AAAACTGGGCCTGAAGATCTGTGGT |
Vgat | ACGACAAACCCAAGATCACG | GTAGACCCAGCACGAACATG | TTCCAGCCCGCTTCCCACG |
GABAAΥ2 | ACTCATTGTGGTTCTGTCCTG | GCTGTGACATAGGAGACCTTG | ATGGTGCTGAGAGTGGTCATCGTC |
Pvalb | CTGGACAAAGACAAAAGTGGC | GACAAGTCTCTGGCATCTGAG | CCTTCAGAATGGACCCCAGCTCA |
36b4 | TCAGTGCCTCACTCCATCAT | AGGAAGGCCTTGACCTTTTC | TGGATACAAAAGGGTCCTGG |
Gene | Accession number | assay ID | |
Bdnf long 3’UTR | EF125675 | Rn02531967_s1 |
Primary Antibody | Secondary Antibody | |
---|---|---|
mBDNF (Icosagen) | 1:1000 Bovin Serum Albumin (BSA) 5% | Anti-mouse 1:1000 Milk3% |
Over/Night (O/N) 4 °C | 1 h Room Temperature (RT) | |
PSD95 (Cell Signalling) | 1:4000 BSA 5% O/N 4 °C | Anti-rabbit 1:8000 Milk3% 1 h RT |
CDC42 (Cell Signalling) | 1:1000 BSA5% O/N 4 °C | Anti-rabbit 1:1000 Milk3% 1 h RT |
GAD65 (Millipore) | 1:2000 Milk5% O/N 4 °C | Anti-rabbit 1:1000 Milk3% 1 h RT |
GAD67 (AbCAM) | 1:2500 Milk3% O/N 4 °C | Anti-mouse 1:5000 Milk3% 1 h RT |
Gene | SERT+/+/NE | SERT+/+/EE | SERT−/−/NE | SERT−/−/EE |
---|---|---|---|---|
Total Bdnf | 100 ± 3 | 110 ± 15 | 97 ± 5 | 146 ± 6 ### |
Bdnf long 3’UTR | 100 ± 5 | 143 ± 14 | 80 ± 6 | 121 ± 8 # |
Psd95 | 100 ± 3 | 100 ± 6 | 85 ± 3 * | 105 ± 5 ## |
Cdc42 | 100 ± 4 | 104 ± 8 | 91 ± 2 | 110 ± 9 |
Gad65 | 100 ± 2 | 115 ± 7 | 79 ± 2 * | 110 ± 12 ## |
Gad67 | 100 ± 3 | 121 ± 9 * | 81 ± 4 * | 93 ± 10 |
Vgat | 100 ± 6 | 113 ± 9 | 77 ± 3 * | 88 ± 10 |
GABAAΥ2 | 100 ± 2 | 107 ± 6 | 83 ± 4 * | 100 ± 6 # |
Pvalb | 100 ± 2 | 101 ± 9 | 80 ± 5 * | 107 ± 6 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbrini, G.; Brivio, P.; Bosch, K.; Homberg, J.R.; Calabrese, F. Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. Genes 2020, 11, 1248. https://doi.org/10.3390/genes11111248
Sbrini G, Brivio P, Bosch K, Homberg JR, Calabrese F. Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. Genes. 2020; 11(11):1248. https://doi.org/10.3390/genes11111248
Chicago/Turabian StyleSbrini, Giulia, Paola Brivio, Kari Bosch, Judith Regina Homberg, and Francesca Calabrese. 2020. "Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers" Genes 11, no. 11: 1248. https://doi.org/10.3390/genes11111248
APA StyleSbrini, G., Brivio, P., Bosch, K., Homberg, J. R., & Calabrese, F. (2020). Enrichment Environment Positively Influences Depression- and Anxiety-Like Behavior in Serotonin Transporter Knockout Rats through the Modulation of Neuroplasticity, Spine, and GABAergic Markers. Genes, 11(11), 1248. https://doi.org/10.3390/genes11111248