Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. The Strain and Culture Conditions
2.3. DNA Extraction
2.4. Full Genome Sequencing
2.5. Functional Genomic Screening
2.6. Sanger and PacBio Sequencing of Amplicons
2.7. Open Reading Frame Prediction and Annotation
2.8. Drop Assay
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kiktev, D.A.; Sheng, Z.W.; Lobachev, K.S.; Petes, T.D. GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2018, 115, E7109–E7118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cases, I.; de Lorenzo, V.; Ouzounis, C.A. Transcription regulation and environmental adaptation in bacteria. Trends Microbiol. 2003, 11, 248–253. [Google Scholar] [CrossRef]
- Xiong, J.B.; Li, D.M.; Li, H.; He, M.Y.; Miller, S.J.; Yu, L.; Rensing, C.; Wang, G.J. Genome analysis and characterization of zinc efflux systems of a highly zinc-resistant bacterium, comamonas testosteroni S44. Res. Microbiol. 2011, 162, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Hirose, J.; Yamazoe, A.; Hosoyama, A.; Kimura, N.; Suenaga, H.; Watanabe, T.; Fujihara, H.; Futagami, T.; Goto, M.; Furukawa, K. Draft genome sequence of the polychlorinated biphenyl-degrading bacterium comamonas testosteroni KF712 (NBRC 110673). Genome Announc. 2015, 3, e01214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhu, W.T.; Cao, Z.; Xu, B.A.; Wang, G.J.; Luo, M.Z. High correlation between genotypes and phenotypes of environmental bacteria Comamonas testosteroni strains. BMC Genom. 2015, 16. [Google Scholar] [CrossRef] [Green Version]
- Maynaud, G.; Brunel, B.; Yashiro, E.; Mergeay, M.; Cleyet-Marel, J.C.; Le Quere, A. CadA of Mesorhizobium metallidurans isolated from a zinc-rich mining soil is a PIB-2-type ATPase involved in cadmium and zinc resistance. Res. Microbiol. 2014, 165, 175–189. [Google Scholar] [CrossRef]
- Intorne, A.C.; de Oliveira, M.V.V.; Pereira, L.d.M.; de Souza Filho, G.A. Essential role of the czc determinant for cadmium, cobalt and zinc resistance in gluconacetobacter diazotrophicus PAl 5. Int. Microbiol. 2012, 15, 69–78. [Google Scholar] [CrossRef]
- Li, X.F.; Zhu, Y.G.; Shaban, B.; Bruxner, T.J.C.; Bond, P.L.; Huang, L.B. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. Sci Rep. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Morgante, V.; Mirete, S.; de Figueras, C.G.; Postigo Cacho, M.; Gonzalez-Pastor, J.E. Exploring the diversity of arsenic resistance genes from acid mine drainage microorganisms. Environ. Microbiol. 2015, 17, 1910–1925. [Google Scholar] [CrossRef]
- Mori, T.; Iwamoto, K.; Wakaoji, S.; Araie, H.; Kohara, Y.; Okamura, Y.; Shiraiwa, Y.; Takeyama, H. Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome. Gene 2016, 576, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Morovic, W.; Roos, P.; Zabel, B.; Hidalgo-Cantabrana, C.; Kiefer, A.; Barrangou, R. Transcriptional and Functional Analysis of Bifidobacterium animalis subsp. lactis exposure to tetracycline. Appl. Environ. Microbiol. 2018, 84, e01999-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamedov, T.G.; Pienaar, E.; Whitney, S.E.; TerMaat, J.R.; Carvill, G.; Goliath, R.; Subramanian, A.; Viljoen, H.J. A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem. 2008, 32, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Wong, J.; Heiner, C.; Oh, S.; Theriot, C.M.; Gulati, A.S.; McGill, S.K.; Dougherty, M.K. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. BioRxiv 2019, 392332. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.L.L.; Yeung, M.L.; Chan, E.; Jia, L.; Lin, C.H.; Huang, Y.; Tse, H.; Wong, S.S.Y.; Sham, P.C.; Lau, S.K.P.; et al. Pacbio but not illumina technology can achieve fast, accurate and complete closure of the high GC, Complex burkholderia pseudomallei two-chromosome genome. Front. Microbiol. 2017, 8, 1448. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A. Third generation DNA sequencing: Pacific biosciences single molecule real time technology. Chem. Biol. 2010, 17, 675–676. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Report. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Myers, E.W.; Sutton, G.G.; Delcher, A.L.; Dew, I.M.; Fasulo, D.P.; Flanigan, M.J.; Kravitz, S.A.; Mobarry, C.M.; Reinert, K.H.; Remington, K.A.; et al. A whole-genome assembly of Drosophila. Science 2000, 287, 2196–2204. [Google Scholar] [CrossRef]
- Berlin, K.; Koren, S.; Chin, C.S.; Drake, J.P.; Landolin, J.M.; Phillippy, A.M. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 2015, 33, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, L.; Chen, M.M.; Chen, J.H.; Li, X.F. Functional metagenomics to mine soil microbiome for novel cadmium resistance genetic determinants. Pedosphere 2019, 29, 298–310. [Google Scholar] [CrossRef]
- Chen, J.; Xing, C.; Zheng, X.; Li, X. Complete genome sequence of cellulomonas sp. Strain Y8, a high-GC-content plasmid-free heavy metal-resistant bacterium isolated from farmland soil. Microbiol. Resour. Announc. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, U.H.; Bachmann, H.S.; Peters, J.; Siffert, W. PCR-amplification of GC-rich regions: ’Slowdown PCR’. Nat. Protoc. 2008, 3, 1312–1317. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Schutt, C.E. The enhancement of PCR amplification by low molecular-weight sulfones. Gene 2001, 274, 293–298. [Google Scholar] [CrossRef]
- Henke, W.; Herdel, K.; Jung, K.; Schnorr, D.; Loening, S.A. Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res. 1997, 25, 3957–3958. [Google Scholar] [CrossRef] [Green Version]
- Chakrabarti, R.; Schutt, C.E. The enhancement of PCR amplification by low molecular weight amides. Nucleic Acids Res. 2001, 29, 2377–2381. [Google Scholar] [CrossRef] [Green Version]
- Strien, J.; Sanft, J.; Mall, G. Enhancement of PCR Amplification of Moderate GC-Containing and Highly GC-Rich DNA Sequences. Mol. Biotechnol. 2013, 54, 1048–1054. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Corbisier, P. Bacterial metal-lux biosensors for a rapid determination of the heavy metal bioavailability and toxicity in solid samples. Res. Microbiol. 1997, 148, 534–536. [Google Scholar] [CrossRef]
- Shivaji, S.; Ara, S.; Singh, A.; Kumar Pinnaka, A. Draft genome sequence of cyclobacterium qasimii strain M12-11BT, isolated from arctic marine sediment. Genome Announc. 2013, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, K.; Hiratake, J.; Irie, M.; Okada, T.; Yamada, C.; Kumagai, H.; Suzuki, H.; Fukuyama, K. Crystal structures of escherichia coli γ-glutamyltranspeptidase in complex with azaserine and acivicin: Novel mechanistic implication for inhibition by glutamine antagonists. J. Mol. Biol. 2008, 380, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Ma, C.; Shi, W.; Liu, W.; Lu, Y.; Liu, Q.; Luo, Z.B. Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in populus× canescens. Tree Physiol. 2017, 37, 1697–1712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Guo, J.J.; He, C.T.; Shen, C.; Huang, Y.Y.; Chen, J.X.; Guo, J.H.; Yuan, J.G.; Yang, Z.Y. Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress. Environ. Sci. Technol. 2016, 50, 6485–6494. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Yang, X.; Lian, Y.; Zhang, B.; He, X.; Xu, W.; Huang, K. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods. Environ. Toxicol. Pharmacol. 2016, 46, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Sauvageau, J.A.; Jumarie, C. Different mechanisms for metal-induced adaptation to cadmium in the human lung cell lines A549 and H441. Cell Biol. Toxicol. 2013, 29, 159–173. [Google Scholar] [CrossRef]
- Aiba, I.; Hossain, A.; Kuo, M.T. Elevated GSH level increases cadmium resistance through down-regulation of Sp1-dependent expression of the cadmium transporter ZIP8. Mol. Pharmacol. 2008, 74, 823–833. [Google Scholar] [CrossRef] [Green Version]
Clone ID | Partial Length by Sanger Sequencing (Bp) (Forward, Reverse) | Full Length by PacBio Sequencing (Bp) | Genome Locus | GC Content (%) | Identity (%) |
---|---|---|---|---|---|
3,4,18 | 15, 604 | 1487 | 3835167–3836672 | 79.73 | 95.32 |
6,7,9,15, 16,29,30,35 | 100, 981 | 841 | 4380530–4381372 | 77.65 | 97.34 |
8,27 | 314, 57 | 1447 | 1213476–1214931 | 79.22 | 96.72 |
13,28 | 51, 618 | 930 | 1608787–1609730 | 78.16 | 94.32 |
14 | 572, 933 | 1258 | 2627868–2629126 | 81.09 | 99.53 |
24 | 7, 746 | 900 | 1780961–1781871 | 77.77 | 97.72 |
40 | 1, 93 | 1017 | 1342804–1343830 | 79.01 | 95.85 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xing, C.; Zheng, X.; Li, X. Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes 2020, 11, 7. https://doi.org/10.3390/genes11010007
Chen J, Xing C, Zheng X, Li X. Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes. 2020; 11(1):7. https://doi.org/10.3390/genes11010007
Chicago/Turabian StyleChen, Jinghao, Chao Xing, Xin Zheng, and Xiaofang Li. 2020. "Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies" Genes 11, no. 1: 7. https://doi.org/10.3390/genes11010007
APA StyleChen, J., Xing, C., Zheng, X., & Li, X. (2020). Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes, 11(1), 7. https://doi.org/10.3390/genes11010007