Next Article in Journal
Systematic Identification and Evolution Analysis of Sox Genes in Coturnix japonica Based on Comparative Genomics
Previous Article in Journal
Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

miR-194 Accelerates Apoptosis of Aβ1–42-Transduced Hippocampal Neurons by Inhibiting Nrn1 and Decreasing PI3K/Akt Signaling Pathway Activity

Psychiatric Department V, Qingdao Mental Health Center, No. 299, Nanjing Road, Shibei District, Qingdao 266000, China
*
Author to whom correspondence should be addressed.
Genes 2019, 10(4), 313; https://doi.org/10.3390/genes10040313
Received: 23 January 2019 / Revised: 8 April 2019 / Accepted: 10 April 2019 / Published: 21 April 2019
(This article belongs to the Section Human Genomics and Genetic Diseases)
  |  
PDF [3057 KB, uploaded 21 April 2019]
  |     |  

Abstract

This article explores the mechanism of miR-194 on the proliferation and apoptosis of Aβ1–42-transduced hippocampal neurons. Aβ1–42-transduced hippocampal neuron model was established by inducing hippocampal neurons with Aβ1–42. MTT assay and flow cytometry were used to detect the viability and apoptosis of hippocampal neurons, respectively. qRT-PCR was used to detect changes in miR-194 and Nrn1 expression after Aβ1–42 induction. Aβ1–42-transduced hippocampal neurons were transfected with miR-194 mimics and/or Nrn1 overexpression vectors. Their viability and neurite length were detected by MTT assay and immunofluorescence, respectively. Western blot was used to detect protein expression. Aβ1–42 inhibited Aβ1–42-transduced hippocampal neuron activity and promoted their apoptosis in a dose-dependent manner. miR-194 was upregulated and Nrn1 was downregulated in Aβ1–42-transduced hippocampal neurons (p < 0.05). Compared with the model group, Aβ1–42-transduced hippocampal neurons of the miR-194 mimic group had much lower activity, average longest neurite length, Nrn1, p-AkT, and Bcl-2 protein expression and had much higher Bax, Caspase-3, and Cleaved Caspase-3 protein expression. Compared with the model group, Aβ1–42-transduced hippocampal neurons of the LV-Nrn1 group had much higher activity, average longest neurite length, Nrn1, p-AkT, and Bcl-2 protein expression and had much lower Bax, Caspase-3, and Cleaved Caspase-3 protein expression. Nrn1 is a target gene of miR-194. miR-194 inhibited apoptosis of Aβ1–42-transduced hippocampal neurons by inhibiting Nrn1 and decreasing PI3K/AkT signaling pathway activity. View Full-Text
Keywords: Alzheimer’s disease; hippocampal neurons; miR-194; Nrn1; proliferation; apoptosis; PI3K/AkT signaling pathway Alzheimer’s disease; hippocampal neurons; miR-194; Nrn1; proliferation; apoptosis; PI3K/AkT signaling pathway
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Wang, T.; Cheng, Y.; Han, H.; Liu, J.; Tian, B.; Liu, X. miR-194 Accelerates Apoptosis of Aβ1–42-Transduced Hippocampal Neurons by Inhibiting Nrn1 and Decreasing PI3K/Akt Signaling Pathway Activity. Genes 2019, 10, 313.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top