Next Article in Journal
An Integrated Analysis of Cashmere Fineness lncRNAs in Cashmere Goats
Previous Article in Journal
The Complex Interplay between Metabolic Reprogramming and Epigenetic Alterations in Renal Cell Carcinoma
Article Menu

Export Article

Open AccessArticle
Genes 2019, 10(4), 265; https://doi.org/10.3390/genes10040265

Genetic Effects of LPIN1 Polymorphisms on Milk Production Traits in Dairy Cattle

1
Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
2
Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Street, Chaoyang District, Beijing 100192, China
*
Author to whom correspondence should be addressed.
Received: 12 March 2019 / Revised: 27 March 2019 / Accepted: 28 March 2019 / Published: 2 April 2019
(This article belongs to the Section Animal Genetics and Genomics)
  |  
PDF [720 KB, uploaded 2 April 2019]
  |     |  

Abstract

Our initial RNA sequencing work identified that lipin 1 (LPIN1) was differentially expressed during dry period, early lactation, and peak of lactation in dairy cows, and it was enriched into the fat metabolic Gene Ontology (GO) terms and pathways, thus we considered LPIN1 as the candidate gene for milk production traits. In this study, we detected the polymorphisms of LPIN1 and verified their genetic effects on milk yield and composition in a Chinese Holstein cow population. We found seven SNPs by re-sequencing the entire coding region and partial flanking region of LPIN1, including one in 5′ flanking region, four in exons, and two in 3′ flanking region. Of these, four SNPs, c.637T > C, c.708A > G, c.1521C > T, and c.1555A > C, in the exons were predicted to result in the amino acid replacements. With the Haploview 4.2, we found that seven SNPs in LPIN1 formed two haplotype blocks (D′ = 0.98–1.00). Single-SNP association analyses showed that SNPs were significantly associated with milk yield, fat yield, fat percentage, or protein yield in the first or second lactation (p = < 0.0001–0.0457), and only g.86049389C > T was strongly associated with protein percentage in both lactations (p = 0.0144 and 0.0237). The haplotype-based association analyses showed that the two haplotype blocks were significantly associated with milk yield, fat yield, protein yield, or protein percentage (p = < 0.0001–0.0383). By quantitative real-time PCR (qRT-PCR), we found that LPIN1 had relatively high expression in mammary gland and liver tissues. Furthermore, we predicted three SNPs, c.637T > C, c.708A > G, and c.1521C > T, using SOPMA software, changing the LPIN1 protein structure that might be potential functional mutations. In summary, we demonstrated the significant genetic effects of LPIN1 on milk production traits, and the identified SNPs could serve as genetic markers for dairy breeding. View Full-Text
Keywords: dairy cows; milk yield and composition; SNP; genetic association dairy cows; milk yield and composition; SNP; genetic association
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Han, B.; Yuan, Y.; Liang, R.; Li, Y.; Liu, L.; Sun, D. Genetic Effects of LPIN1 Polymorphisms on Milk Production Traits in Dairy Cattle. Genes 2019, 10, 265.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top