Genetic Diversity Assessed by Genotyping by Sequencing (GBS) in Watermelon Germplasm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. DNA Extraction
2.3. Preparation of Genotyping-by-Sequencing Libraries
2.4. Sequence Preprocessing and SNP Calling
2.5. Population Structure and Genetic Diversity
3. Results
3.1. GBS Analysis
3.2. Genetic Diversity of 68 Watermelon Accessions
3.3. Genetic Diversity of 27 Korean Commercial Watermelons
4. Discussion
4.1. Genotyping by Sequencing
4.2. DAPC Analysis
4.3. Genetic Diversity of 68 Watermelon Accessions
4.4. Genetic Diversity of Korea Commercial Watermelon Accessions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nimmakayala, P.; Levi, A.; Abburi, L.; Abburi, V.L.; Tomason, Y.R.; Saminathan, T.; Vajja, V.G.; Malkaram, S.; Reddy, R.; Wehner, T.C.; et al. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genom. 2014, 15, 767. [Google Scholar] [CrossRef] [PubMed]
- FAO. Available online: http://faostat.fao.org (accessed on 12 March 2019).
- Park, Y.; Cho, S. Watermelon production and breeding in South Korea. Isr. J. Plant Sci. 2013, 60, 415–423. [Google Scholar]
- Kim, Y.-S.; Ko, C.-S.; Yang, H.-B.; Kang, S.-C. Genome-wide analysis of sequence variations in eight inbred watermelon lines. J. Plant Biotechnol. 2016, 43, 164–173. [Google Scholar] [CrossRef]
- Lee, J.; Son, B.; Choi, Y.; Kang, J.; Lee, Y.; Il Je, B.; Park, Y. Development of an SNP set for marker-assisted breeding based on the genotyping-by-sequencing of elite inbred lines in watermelon. J. Plant Biotechnol. 2018, 45, 242–249. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, J.; Sun, H.; Salse, J.; Lucas, W.J.; Zhang, H.; Zheng, Y.; Mao, L.; Ren, Y.; Wang, Z.; et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 2013, 45, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Frankel, O.H. Genetic conservation: Our evolutionary responsibility. Genetics 1974, 78, 53–65. [Google Scholar]
- Navot, N.; Zamir, D. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst. Evol. 1987, 156, 61–67. [Google Scholar] [CrossRef]
- Solmaz, I.; Sari, N.; Aka-Kacar, Y.; Yalcin-Mendi, N.Y. The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genet. Res. Crop Evol. 2010, 57, 763–771. [Google Scholar] [CrossRef]
- Nimmakayala, P.; Tomason, Y.R.; Jeong, J.; Ponniah, S.K.; Karunathilake, A.; Levi, A.; Perumal, R.; Reddy, U.K. Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Acta Hortic. 2010, 8, 16–25. [Google Scholar] [CrossRef]
- Nantoume, A.D.; Andersen, S.B.; Jensen, B.D. Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite (SSR) markers. Genet. Res. Crop Evol. 2013, 60, 2129–2141. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Guo, S.; Ren, Y.; Gong, G.; Weng, Y.; Xu, Y. Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Euphytica 2012, 186, 329–342. [Google Scholar]
- Levi, A.; Thies, J.A.; Wechter, W.P.; Harrison, H.F.; Simmons, A.M.; Reddy, U.K.; Nimmakayala, P.; Fei, Z. High frequency oligonucleotides: Targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet. Res. Crop Evol. 2013, 60, 427–440. [Google Scholar] [CrossRef]
- Ramanatha Rao, V.; Hodgkin, T. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult. 2002, 68, 1–19. [Google Scholar] [CrossRef]
- Cadima Fuentes, X.; van Treuren, R.; Hoekstra, R.; van den Berg, R.G.; Sosef, M.S.M. Genetic diversity of Bolivian wild potato germplasm: Changes during ex situ conservation management and comparisons with resampled in situ populations. Genet. Res. Crop Evol. 2017, 64, 331–344. [Google Scholar] [CrossRef]
- Xiao, L.Q.; Ge, X.J.; Gong, X.; Hao, G.; Zheng, S.X. ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann. Bot. 2004, 94, 133–138. [Google Scholar] [CrossRef]
- De Donato, M.; Peters, S.O.; Mitchell, S.E.; Hussain, T.; Imumorin, I.G. Genotyping-by-Sequencing (GBS): A Novel, Efficient and Cost-Effective Genotyping Method for Cattle Using Next-Generation Sequencing. PLoS ONE 2013, 8, e62137. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data; The Babraham Institute: Cambridge, UK, 2010; Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 16 October 2019).
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genom. Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
- Ivandic, V.; Hackett, C.A.; Nevo, E.; Keith, R.; Thomas, W.T.B.; Forster, B.P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: Associations with ecology, geography and flowering time. Plant Mol. Biol. 2002, 48, 511–527. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Jombart, T.; Collins, C. A Tutorial for Discriminant Analysis of Principal Components (DAPC) Using Adegenet 2.0.0; MRC Centre for Outbreak Analysis and Modelling; Imperial College London: London, UK, 2015. [Google Scholar]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Earl, D.A.; von Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2005, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Pavan, S.; Curci, P.L.; Zuluaga, D.L.; Blanco, E.; Sonnante, G. Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS ONE 2018, 13, e0205988. [Google Scholar] [CrossRef]
- Ren, Y.; McGregor, C.; Zhang, Y.; Gong, G.; Zhang, H.; Guo, S.; Sun, H.; Cai, W.; Zhang, J.; Xu, Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014, 14, 33. [Google Scholar] [CrossRef]
- Deperi, S.I.; Tagliotti, M.E.; Bedogni, M.C.; Manrique-Carpintero, N.C.; Coombs, J.; Zhang, R.; Douches, D.; Huarte, M.A. Discriminant analysis of principal components and pedigree assessment of genetic diversity and population structure in a tetraploid potato panel using SNPs. PLoS ONE 2018, 13, e0194398. [Google Scholar] [CrossRef] [PubMed]
- Campoy, J.A.; Lerigoleur-Balsemin, E.; Christmann, H.; Beauvieux, R.; Girollet, N.; Quero-García, J.; Dirlewanger, E.; Barreneche, T. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars. BMC Plant Biol. 2016, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, F.; Stift, M.; Vergilino, R.; Mable, B.K. Recent progress and challenges in population genetics of polyploid organisms: An overview of current state-of-the-art molecular and statistical tools. Mol. Ecol. 2014, 23, 40–69. [Google Scholar] [CrossRef]
- Mariette, S.; Tavaud, M.; Arunyawat, U.; Capdeville, G.; Millan, M.; Salin, F. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus. BMC Genet. 2010, 11, 77. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the enetics of opulations. In Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume 4. [Google Scholar]
- Mashilo, J.; Shimelis, H.; Odindo, A.; Assefa, A. Assessment of the genetic diversity of dessert watermelon (Citrullus lanatus var. lanatus) landrace collections of South Africa using SSR markers. Aust. J. Crop Sci. 2017, 11, 1392–1398. [Google Scholar] [CrossRef]
- Reddy, U.K.; Abburi, L.; Abburi, V.L.; Saminathan, T.; Cantrell, R.; Vajja, V.G.; Reddy, R.; Tomason, Y.R.; Levi, A.; Wehner, T.C.; et al. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J. Hered. 2015, 106, 166–176. [Google Scholar] [CrossRef]
- Morjan, C.L.; Rieseberg, L.H. How species evolve collectively: Implications of gene flow and selection for the spread of advantageous alleles. Mol. Ecol. 2004, 13, 1341–1356. [Google Scholar] [CrossRef]
- Aguilar, R.; Quesada, M.; Ashworth, L.; Herrerias-Diego, Y.; Lobo, J. Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Mol. Ecol. 2008, 17, 5177–5188. [Google Scholar] [CrossRef]
- Djè, Y.; Forcioli, D.; Ater, M.; Lefèbvre, C.; Vekemans, X. Assessing population genetic structure of sorghum landraces from North-western Morocco using allozyme and microsatellite markers. Theor. Appl. Genet. 1999, 99, 157–163. [Google Scholar] [CrossRef]
- Abdin, M.Z.; Arya, L.; Ram, C.; Sureja, A.K.; Verma, M. Development of novel gene-based microsatellite markers for robust genotyping purposes in Lagenaria siceraria. Sci. Hortic. 2015, 191, 15–24. [Google Scholar]
- Levi, A.; Jarret, R.; Kousik, S.; Patrick Wechter, W.; Nimmakayala, P.; Reddy, U. Genetic Resources of Watermelon. In Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models; Grumet, R., Katzir, N., Garcia-Mas, J., Eds.; Springer: Cham, Switzerland, 2017; Volume 4. [Google Scholar]
- Solmaz, I.; Aka Kacar, Y.; Sari, N.; Şimşek, Ö. Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turk. J. Agric. For. 2016, 40, 407–419. [Google Scholar]
SV 1 | df | SS | MS | Est. Var. | % | F-statistics | Nm |
---|---|---|---|---|---|---|---|
Among clusters | 3 | 2943.641 | 981.214 | 20.880 | 7% | Fst = 0.068 | 3.43 |
Within clusters | 132 | 37595.411 | 284.814 | 284.814 | 93% | ||
Total | 135 | 40539.051 | 305.693 | 100% |
Pop | N 1 | Ho | He | F | %P |
---|---|---|---|---|---|
1 | 20 | 0.099 ± 0.004 | 0.323 ± 0.003 | 0.689 ± 0.009 | 96.5 |
2 | 19 | 0.107 ± 0.003 | 0.323 ± 0.003 | 0.658 ± 0.009 | 97.9 |
3 | 19 | 0.136 ± 0.004 | 0.342 ± 0.003 | 0.615 ± 0.009 | 98.9 |
4 | 10 | 0.193 ± 0.005 | 0.183 ± 0.004 | -0.039 ± 0.008 | 57.5 |
Total | 68 | 0.134 ± 0.002 | 0.293 ± 0.002 | 0.540 ± 0.005 | 87.7 |
Cluster | Cluster | Fst | Nm |
---|---|---|---|
1 | 2 | 0.262 | 0.705 |
1 | 3 | 0.229 | 0.844 |
2 | 3 | 0.157 | 1.344 |
1 | 4 | 0.247 | 0.761 |
2 | 4 | 0.384 | 0.401 |
3 | 4 | 0.322 | 0.527 |
SV 1 | df | SS | MS | Est. Var. | % | F-statistics | Nm |
---|---|---|---|---|---|---|---|
Among clusters | 2 | 5474.485 | 2737.243 | 149.115 | 45% | Fst = 0.374 | 0.418 |
Within clusters | 51 | 9471.330 | 185.712 | 185.712 | 55% | ||
Total | 53 | 14945.815 | 334.828 | 100% |
N 1 | Ho | He | F | %P | |
---|---|---|---|---|---|
KOR_C1 | 7 | 0.061 ± 0.004 | 0.127 ± 0.004 | 0.479 ± 0.014 | 45.6 |
KOR_C2 | 13 | 0.170 ± 0.006 | 0.181 ± 0.005 | 0.144 ± 0.012 | 55.2 |
KOR_C3 | 7 | 0.049 ± 0.004 | 0.291 ± 0.004 | 0.824 ± 0.010 | 76.7 |
Total | 27 | 0.094 ± 0.003 | 0.199 ± 0.003 | 0.524 ± 0.008 | 59.2 |
Cluster | Cluster | Fst | Nm |
---|---|---|---|
1 | 2 | 0.424 | 0.334 |
1 | 3 | 0.341 | 0.483 |
2 | 3 | 0.356 | 0.452 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.J.; Lee, J.-R.; Sebastin, R.; Shin, M.-J.; Kim, S.-H.; Cho, G.-T.; Hyun, D.Y. Genetic Diversity Assessed by Genotyping by Sequencing (GBS) in Watermelon Germplasm. Genes 2019, 10, 822. https://doi.org/10.3390/genes10100822
Lee KJ, Lee J-R, Sebastin R, Shin M-J, Kim S-H, Cho G-T, Hyun DY. Genetic Diversity Assessed by Genotyping by Sequencing (GBS) in Watermelon Germplasm. Genes. 2019; 10(10):822. https://doi.org/10.3390/genes10100822
Chicago/Turabian StyleLee, Kyung Jun, Jung-Ro Lee, Raveendar Sebastin, Myoung-Jae Shin, Seong-Hoon Kim, Gyu-Taek Cho, and Do Yoon Hyun. 2019. "Genetic Diversity Assessed by Genotyping by Sequencing (GBS) in Watermelon Germplasm" Genes 10, no. 10: 822. https://doi.org/10.3390/genes10100822
APA StyleLee, K. J., Lee, J.-R., Sebastin, R., Shin, M.-J., Kim, S.-H., Cho, G.-T., & Hyun, D. Y. (2019). Genetic Diversity Assessed by Genotyping by Sequencing (GBS) in Watermelon Germplasm. Genes, 10(10), 822. https://doi.org/10.3390/genes10100822