Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Elevated Levels of Immunoregulatory Cytokines Detected in the Saliva of Radiated Head and Neck Cancer Patients Correlated with Clinical Oral Manifestations
3.2. Cytokines Detected in the Tear Fluid of Radiated Head and Neck Cancer Patients Correlated with Clinical Ocular Symptoms
3.3. Cytokines Detected in Radiated Head and Neck Cancer Patients Affected Pro-Inflammatory and Apoptotic Cellular Pathways
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oropharyngeal cancer treatment (Adult) (PDQ®)—Patient version. In PDQ Cancer Information Summaries; National Cancer Institute: Bethesda, MD, USA, 2002.
- Oropharyngeal cancer treatment (Adult) (PDQ®)—Health professional version. In PDQ Cancer Information Summaries; National Cancer Institute: Bethesda, MD, USA, 2002.
- Nigro, C.L.; Denaro, N.; Merlotti, A.; Merlano, M. Head and neck cancer: Improving outcomes with a multidisciplinary approach. Cancer Manag. Res. 2017, 9, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Roscher, I.; Falk, R.S.; Vos, L.; Clausen, O.P.F.; Helsing, P.; Gjersvik, P.; Robsahm, T.E. Notice of retraction and replacement: Roscher et al. Validating 4 staging systems for cutaneous squamous cell carcinoma using population-based data: A nested case-control study. JAMA Dermatol. 2018;154(4):428–434. JAMA Dermatol 2018, 154, 1488–1489. [Google Scholar] [CrossRef] [PubMed]
- Kordzińska-Cisek, I.; Cisek, P.; Grzybowska-Szatkowska, L. The role of prognostic factors in salivary gland tumors treated by surgery and adjuvant radio- or chemoradiotherapy—A single institution experience. Cancer Manag. Res. 2020, 12, 1047–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evers, C.; Ostheimer, C.; Sieker, F.; Vordermark, D.; Medenwald, D. Benefit from surgery with additional radiotherapy in N1 head and neck cancer at the time of IMRT: A population-based study on recent developments. PLoS ONE 2020, 15, e0229266. [Google Scholar] [CrossRef] [PubMed]
- Lehrich, B.M.; Goshtasbi, K.; Abiri, A.; Yasaka, T.; Sahyouni, R.; Papagiannopoulos, P.; Tajudeen, B.A.; Kuan, E.C. Impact of induction chemotherapy and socioeconomics on sinonasal undifferentiated carcinoma survival. Int. Forum Allergy Rhinol. 2020, 10, 679–688. [Google Scholar] [CrossRef]
- Jelonek, K.; Krzywon, A.; Jablonska, P.; Slominska, E.M.; Smolenski, R.T.; Polanska, J.; Rutkowski, T.; Mrochem-Kwarciak, J.; Składowski, K.; Widlak, P. Systemic effects of radiotherapy and concurrent chemo-radiotherapy in head and neck cancer patients-comparison of serum metabolome profiles. Metabolites 2020, 10, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutting, C.M.; Morden, J.; Harrington, K.J.; Urbano, T.G.; Bhide, S.A.; Clark, C.H.; Miles, E.A.; Miah, A.B.; Newbold, K.; Tanay, M.; et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. Lancet Oncol. 2011, 12, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Dirix, P.; Vanstraelen, B.; Jorissen, M.; Poorten, V.V.; Nuyts, S. Intensity-modulated radiotherapy for sinonasal cancer: Improved outcome compared to conventional radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 998–1004. [Google Scholar] [CrossRef]
- Randall, K.; Stevens, J.; Yepes, J.F.; Randall, M.E.; Kudrimoti, M.; Feddock, J.; Xi, J.; Kryscio, R.J.; Miller, C.S. Analysis of factors influencing the development of xerostomia during intensity-modulated radiotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Moore, H.D.; Ivey, R.G.; Voytovich, U.J.; Lin, C.; Stirewalt, D.L.; Pogosova-Agadjanyan, E.L.; Paulovich, A.G. The human salivary proteome is radiation responsive. Radiat. Res. 2014, 181, 521–530. [Google Scholar] [CrossRef] [Green Version]
- Hagan, S.; Tomlinson, A. Tear fluid biomarker profiling: A review of multiplex bead analysis. Ocul. Surf. 2013, 11, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Aqrawi, L.A.; Utheim, T.P.; Tashbayev, B.; Utheim, Ø.A.; Reppe, S.; Hove, L.H.; Herlofson, B.B.; Singh, P.B.; Palm, Ø.; et al. Elevated cytokine levels in tears and saliva of patients with primary Sjogren’s syndrome correlate with clinical ocular and oral manifestations. Sci. Rep. 2019, 9, 7319. [Google Scholar] [CrossRef] [PubMed]
- Guerra, E.N.S.; Rêgo, D.F.; Elias, S.T.; Coletta, R.D.; Mezzomo, L.A.M.; Gozal, D.; Canto, G.D.L. Diagnostic accuracy of serum biomarkers for head and neck cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2016, 101, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Aqrawi, L.A.; Galtung, H.K.; Vestad, B.; Øvstebø, R.; Thiede, B.; Rusthen, S.; Young, A.; Guerreiro, E.M.; Utheim, T.P.; Chen, X.; et al. Identification of potential saliva and tear biomarkers in primary Sjogren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res. Ther. 2017, 19, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Scofield, R.H.; Hyon, J.Y.; Yun, P.-Y.; Lee, H.-J.; Lee, E.Y.; Song, Y.W.; Lee, E.Y.; Lee, E.B. Salivary chemokine levels in patients with primary Sjogren’s syndrome. Rheumatology (Oxford) 2010, 49, 1747–1752. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, Q.; Ye, M.; Yu, J. Tear luminex analysis in dry eye patients. Med. Sci. Monit. 2018, 24, 7595–7602. [Google Scholar] [CrossRef]
- Principe, S.; Dikova, V.; Bagán, J. Salivary cytokines in patients with Head and Neck Cancer (HNC) treated with radiotherapy. J. Clin. Exp. Dent. 2019, 11, e1072–e1077. [Google Scholar] [CrossRef]
- Citrin, D.E.; Hitchcock, Y.J.; Chung, E.J.; Frandsen, J.; Urick, M.E.; Shield, W.; Gaffney, D.K. Determination of cytokine protein levels in oral secretions in patients undergoing radiotherapy for head and neck malignancies. Radiat. Oncol. 2012, 7, 64. [Google Scholar] [CrossRef] [Green Version]
- Russo, N.; Bellile, E.; Murdoch-Kinch, C.A.; Liu, M.; Eisbruch, A.; Wolf, G.T.; D’Silva, N.J. Cytokines in saliva increase in head and neck cancer patients after treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 483–490.e481. [Google Scholar] [CrossRef] [Green Version]
- Schapher, M.; Wendler, O.; Gröschl, M. Salivary cytokines in cell proliferation and cancer. Clin. Chim. Acta 2011, 412, 1740–1748. [Google Scholar] [CrossRef]
- Sahibzada, H.A.; Khurshid, Z.; Khan, R.S.; Naseem, M.; Siddique, K.M.; Mali, M.; Zafar, M.S. Salivary IL-8, IL-6 and TNF-alpha as potential diagnostic biomarkers for oral cancer. Diagnostics 2017, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Rathnayake, N.; Åkerman, S.; Klinge, B.; Lundegren, N.; Jansson, H.; Tryselius, Y.; Sorsa, T.; Gustafsson, A. Salivary biomarkers for detection of systemic diseases. PLoS ONE 2013, 8, e61356. [Google Scholar] [CrossRef] [Green Version]
- Tashbayev, B.; Rusthen, S.; Young, A.; Herlofson, B.B.; Hove, L.H.; Singh, P.B.; Rykke, M.; Aqrawi, L.A.; Chen, X.; Utheim, Ø.A.; et al. Interdisciplinary, comprehensive oral and ocular evaluation of patients with primary Sjogren’s syndrome. Sci. Rep. 2017, 7, 10761. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Utheim Øygunn, A.; Xiao, J.; Adil, M.Y.; Stojanović, A.; Tashbayev, B.; Jensen, J.L.; Utheim, T.P. Meibomian gland features in a Norwegian cohort of patients with primary Sjogren’s syndrome. PLoS ONE 2017, 12, e0184284. [Google Scholar]
- Thomson, W.M.; Van Der Putten, G.-J.; De Baat, C.; Ikebe, K.; Matsuda, K.-I.; Enoki, K.; Hopcraft, M.S.; Ling, G.Y. Shortening the xerostomia inventory. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osailan, S.; Pramanik, R.; Shirlaw, P.; Proctor, G.; Challacombe, S.J. Clinical assessment of oral dryness: Development of a scoring system related to salivary flow and mucosal wetness. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 114, 597–603. [Google Scholar] [CrossRef]
- Bron, A.J.; Evans, V.E.; Smith, J.A. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea 2003, 22, 640–650. [Google Scholar] [CrossRef]
- Landsend, E.C.S.; Utheim, Ø.A.; Pedersen, H.R.; Aass, H.C.D.; Lagali, N.; Dartt, D.A.; Baraas, R.C.; Utheim, T.P. The level of inflammatory tear cytokines is elevated in congenital aniridia and associated with meibomian gland dysfunction. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2197–2204. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Sharma, S.; John, M.S. CCL21 cancer immunotherapy. Cancers (Basel) 2014, 6, 1098–1110. [Google Scholar] [CrossRef]
- Oliveira-Neto, H.H.; Souza, P.P.C.; Da Silva, M.R.B.; Mendonça, E.F.; Silva, T.; Batista, A.C. The expression of chemokines CCL19, CCL21 and their receptor CCR7 in oral squamous cell carcinoma and its relevance to cervical lymph node metastasis. Tumour Biol. 2013, 34, 65–70. [Google Scholar] [CrossRef]
- Haghshenas, M.R.; Ashraf, M.J.; Khademi, B.; Ghaderi, A.; Erfani, N.; Razmkhah, M. Chemokine and chemokine receptor patterns in patients with benign and malignant salivary gland tumors: A distinct role for CCR7. Eur. Cytokine Netw. 2017, 28, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Ahmed, S.S.; Ali, A.; Khan, F.A.; Zulfiqar, G.; Iqbal, J.; Khan, A.A.; Shoaib, M. Salivary immunosuppressive cytokines IL-10 and IL-13 are significantly elevated in oral squamous cell carcinoma patients. Cancer Investig. 2015, 33, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, K.; Fukuda, S.; Mori, T.; Matsuda, K.; Yamaguchi, T.; Tanikawa, C.; Ogawa, M.; Nakamura, Y.; Arakawa, H. Identification of fractalkine, a CX3C-type chemokine, as a direct target of p53. Cancer Res. 2000, 60, 3722–3726. [Google Scholar]
- Connolly, K.A.; Belt, B.A.; Figueroa, N.M.; Murthy, A.; Patel, A.; Kim, M.; Lord, E.M.; Linehan, D.C.; Gerber, S.A. Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes. Oncotarget 2016, 7, 86522–86535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, Z.; Yang, X.; Chen, X.; Xia, J.; Cheng, B.; Tao, X. CCL2 promotes cell migration by inducing epithelial-mesenchymal transition in oral squamous cell carcinoma. J. Oral Pathol. Med. 2019, 48, 477–482. [Google Scholar] [CrossRef]
- Wolff, H.A.; Rolke, D.; Rave-Fränk, M.; Schirmer, M.; Eicheler, W.; Doerfler, A.; Hille, A.; Hess, C.F.; Matthias, C.; Rödel, R.M.W.; et al. Analysis of chemokine and chemokine receptor expression in squamous cell carcinoma of the head and neck (SCCHN) cell lines. Radiat. Environ. Biophys. 2011, 50, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Khurram, S.A.; Bingle, L.; McCabe, B.M.; Farthing, P.M.; Whawell, S.A. The chemokine receptors CXCR1 and CXCR2 regulate oral cancer cell behaviour. J. Oral Pathol. Med. 2014, 43, 667–674. [Google Scholar] [CrossRef]
- Ferlito, A.; Shaha, A.R.; Silver, C.E.; Rinaldo, A.; Mondin, V. Incidence and sites of distant metastases from head and neck cancer. ORL J. Otorhinolaryngol. Relat. Spec. 2001, 63, 202–207. [Google Scholar] [CrossRef]
- Coulin, F.; Power, C.A.; Alouani, S.; Peitsch, M.C.; Schroeder, J.-M.; Moshizuki, M.; Clark-Lewis, I.; Wells, T.N.C. Characterisation of macrophage inflammatory protein-5/human CC cytokine-2, a member of the macrophage-inflammatory-protein family of chemokines. Eur. J. Biochem. 1997, 248, 507–515. [Google Scholar] [CrossRef]
- Watanabe, M.; Horimasu, Y.; Iwamoto, H.; Yamaguchi, K.; Sakamoto, S.; Masuda, T.; Nakashima, T.; Miyamoto, S.; Ohshimo, S.; Fujitaka, K.; et al. C-C motif chemokine ligand 15 May be a useful biomarker for predicting the prognosis of patients with chronic hypersensitivity pneumonitis. Respiration 2019, 98, 212–220. [Google Scholar] [CrossRef] [Green Version]
Patient No. | Age | Sex | Smoking Status | Type of Radiotherapy Treatment * | Total Radiation Dose (Gy) | Chemo-Therapy |
---|---|---|---|---|---|---|
1 | 54 | Male | No | Primary | 68 | + |
2 | 75 | Male | No | Primary | 68 | − |
3 | 63 | Female | No | Primary | 70 | + |
4 | 82 | Female | No | Primary | 68 | − |
5 | 61 | Male | No | Primary | 68 | + |
6 | 70 | Male | No | Primary | 68 | + |
7 | 69 | Female | Yes | Primary | 68 | − |
8 | 58 | Male | No | Primary | 68 | + |
9 | 67 | Male | No | Primary | 68 | + |
10 | 59 | Male | Yes | Primary | 68 | − |
11 | 53 | Male | No | Primary | 68 | + |
12 | 64 | Male | No | Primary | 68 | + |
13 | 57 | Male | Yes | Primary | 68 | + |
14 | 68 | Male | No | Primary | 68 | + |
15 | 73 | Male | No | Postoperative | 56 | − |
16 | 66 | Female | No | Postoperative | 66 | − |
17 | 65 | Female | No | Postoperative | 60 | − |
18 | 73 | Female | No | Postoperative | 66 | − |
19 | 71 | Female | No | Postoperative | 60 | − |
20 | 66 | Female | No | Postoperative | 66 | − |
21 | 51 | Female | Yes | Postoperative | 66 | − |
22 | 58 | Male | No | Postoperative | 60 | - |
23 | 41 | Female | Yes | Postoperative | 60 | + |
24 | 82 | Male | No | Postoperative | 60 | − |
25 | 51 | Female | No | Postoperative | 60 | + |
26 | 65 | Female | No | Postoperative | 66 | − |
27 | 58 | Male | No | Postoperative | 60 | − |
28 | 60 | Female | Yes | Postoperative | 50 | − |
29 | 82 | Male | No | Postoperative | 60 | − |
Sum CODS * | CXCL 1 ** | IL-4 ** | CCL 15 ** | CCL21 ** | CX3CL1 ** | CCL2 ** |
---|---|---|---|---|---|---|
8 | 551 | 12 | 83 | 418 | 488 | 163 |
8 | 570 | 15 | 40 | 258 | 242 | 70 |
8 | 546 | 8 | 26 | 162 | 213 | 52 |
8 | 424 | 1 | 36 | 112 | 172 | 50 |
8 | 1252 | 11 | 44 | 256 | 437 | 143 |
8 | 200 | 0 | 37 | 348 | 213 | 195 |
7 | 270 | 5 | 21 | 327 | 314 | 136 |
7 | 235 | 0 | 26 | 303 | 221 | 135 |
7 | 274 | 2 | 15 | 202 | 358 | 160 |
7 | 82 | 0 | 13 | 305 | 185 | 202 |
7 | 264 | 0 | 10 | 243 | 221 | 154 |
7 | 290 | 0 | 38 | 190 | 300 | 71 |
6 | 245 | 9 | 21 | 417 | 442 | 160 |
6 | 51 | 0 | 13 | 192 | 186 | 111 |
6 | 123 | 6 | 30 | 238 | 255 | 98 |
6 | 11 | 0 | 3 | 0 | 97 | 18 |
6 | 266 | 0 | 20 | 211 | 183 | 100 |
6 | 102 | 0 | 8 | 147 | 271 | 123 |
5 | 72 | 0 | 18 | 0 | 126 | 28 |
5 | 1503 | 11 | 124 | 389 | 748 | 211 |
4 | 152 | 4 | 24 | 141 | 331 | 54 |
4 | 56 | 0 | 5 | 133 | 129 | 47 |
4 | 228 | 0 | 12 | 256 | 507 | 162 |
3 | 37 | 0 | 16 | 173 | 137 | 47 |
3 | 188 | 0 | 14 | 188 | 142 | 65 |
3 | 68 | 0 | 41 | 167 | 100 | 24 |
3 | 158 | 0 | 6 | 181 | 125 | 139 |
2 | 118 | 0 | 9 | 164 | 168 | 49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aqrawi, L.A.; Chen, X.; Hynne, H.; Amdal, C.; Reppe, S.; Aass, H.C.D.; Rykke, M.; Hove, L.H.; Young, A.; Herlofson, B.B.; et al. Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways. Cells 2020, 9, 2050. https://doi.org/10.3390/cells9092050
Aqrawi LA, Chen X, Hynne H, Amdal C, Reppe S, Aass HCD, Rykke M, Hove LH, Young A, Herlofson BB, et al. Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways. Cells. 2020; 9(9):2050. https://doi.org/10.3390/cells9092050
Chicago/Turabian StyleAqrawi, Lara A., Xiangjun Chen, Håvard Hynne, Cecilie Amdal, Sjur Reppe, Hans Christian D. Aass, Morten Rykke, Lene Hystad Hove, Alix Young, Bente Brokstad Herlofson, and et al. 2020. "Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways" Cells 9, no. 9: 2050. https://doi.org/10.3390/cells9092050
APA StyleAqrawi, L. A., Chen, X., Hynne, H., Amdal, C., Reppe, S., Aass, H. C. D., Rykke, M., Hove, L. H., Young, A., Herlofson, B. B., Westgaard, K. L., Utheim, T. P., Galtung, H. K., & Jensen, J. L. (2020). Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways. Cells, 9(9), 2050. https://doi.org/10.3390/cells9092050