13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in Dictyostelium
Abstract
:1. Introduction
2. Microtubule-Based Motilities
3. Microtubule-Based Motor Machinery
3.1. Dynein
3.2. Kinesins
3.2.1. Organelle Transporters (DdKif1, DdKif3)
3.2.2. Potential MT Connectors (DdKif5, DdKif7)
3.2.3. Dynein Antagonists (DdKif8, DdKif10)
3.2.4. Spindle Assembly (DdKif9, DdKif6, DdKif4)
3.2.5. Spindle Elongation and Cleavage (DdKif13, DdKif12)
3.3. Developmentally Regulated
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Roos, U.P.; DeBrabander, M.; Nuydens, R. Movements of intracellular particles in undifferentiated amebae of Dictyostelium discoideum. Cell Motil. Cytoskelet. 1987, 7, 258–271. [Google Scholar] [CrossRef]
- Ma, S.; Chisholm, R.L. Cytoplasmic dynein-associated structures move bidirectionally in vivo. J. Cell Sci. 2002, 115, 1453–1460. [Google Scholar]
- Pollock, N.; de Hostos, E.L.; Turck, C.W.; Vale, R.D. Reconstitution of membrane transport powered by a novel dimeric kinesin motor of the Unc104/Kif1a family purified from Dictyostelium. J. Cell Biol. 1999, 147, 493–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, N.; Koonce, M.P.; de Hostos, E.L.; Vale, R.D. In vitro microtubule-based organelle transport in wild-type Dictyostelium and cells overexpressing a truncated dynein heavy chain. Cell Motil. Cytoskelet. 1998, 40, 304–314. [Google Scholar] [CrossRef]
- Kimble, M.; Kuzmiak, C.; McGovern, K.N.; de Hostos, E.L. Microtubule organization and the effects of GFP-tubulin expression in Dictyostelium discoideum. Cell Motil. Cytoskelet. 2000, 47, 48–62. [Google Scholar] [CrossRef]
- Koonce, M.P.; Kohler, J.; Neujahr, R.; Schwartz, J.M.; Tikhonenko, I.; Gerisch, G. Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position. EMBO J. 1999, 18, 6786–6792. [Google Scholar] [CrossRef] [Green Version]
- Neujahr, R.; Albrecht, R.; Kohler, J.; Matzner, M.; Schwartz, J.M.; Westphal, M.; Gerisch, G. Microtubule-mediated centrosome motility and the positioning of cleavage furrows in multinucleate myosin II-null cells. J. Cell Sci. 1998, 111, 1227–1240. [Google Scholar] [PubMed]
- Brito, D.A.; Strauss, J.; Magidson, V.; Tikhonenko, I.; Khodjakov, A.; Koonce, M.P. Pushing forces drive the comet-like motility of microtubule arrays in Dictyostelium. Mol. Biol. Cell 2005, 16, 3334–3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos, U.P.; Camenzind, R. Spindle dynamics during mitosis in Dictyostelium discoideum. Eur. J. Cell Biol. 1981, 25, 248–257. [Google Scholar]
- Tikhonenko, I.; Nag, D.K.; Martin, N.; Koonce, M.P. Kinesin-5 is not essential for mitotic spindle elongation in Dictyostelium. Cell Motil. Cytoskelet. 2008, 65, 853–862. [Google Scholar] [CrossRef]
- Kitanishi, T.; Shibaoka, H.; Fukui, Y. Disruption of microtubules and retardation of development of Dictyostelium with ethyl N-phenylcarbamate and thiabendazole. Protoplasma 1984, 120, 185–196. [Google Scholar] [CrossRef]
- Koonce, M.P.; Grissom, P.M.; McIntosh, J.R. Dynein from Dictyostelium: Primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein. J. Cell Biol. 1992, 119, 1597–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koonce, M.P.; Knecht, D.A. Cytoplasmic dynein heavy chain is an essential gene product in Dictyostelium. Cell Motil. Cytoskelet. 1998, 39, 63–72. [Google Scholar] [CrossRef]
- Koonce, M.P.; Samsó, M. Overexpression of cytoplasmic dynein’s globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell 1996, 7, 935–948. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Triviños-Lagos, L.; Gräf, R.; Chisholm, R.L. Dynein intermediate chain mediated dynein–dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 1999, 147, 1261–1274. [Google Scholar] [CrossRef] [Green Version]
- Rehberg, M.; Kleylein-Sohn, J.; Faix, J.; Ho, T.H.; Schulz, I.; Gräf, R. Dictyostelium Lis1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol. Biol. Cell 2005, 16, 2759–2771. [Google Scholar] [CrossRef] [Green Version]
- Hestermann, A.; Gräf, R. The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules. BMC Cell Biol. 2004, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, G.; Vale, R.D. Identification of a kinesin-like microtubule-based motor protein in Dictyostelium discoideum. EMBO J. 1989, 8, 3229–3234. [Google Scholar] [CrossRef]
- De Hostos, E.L.; McCaffrey, G.; Sucgang, R.; Pierce, D.W.; Vale, R.D. A developmentally regulated kinesin-related motor protein from Dictyostelium discoideum. Mol. Biol. Cell 1998, 9, 2093–2106. [Google Scholar] [CrossRef] [Green Version]
- Kollmar, M.; Glöckner, G. Identification and phylogenetic analysis of Dictyostelium discoideum kinesin proteins. BMC Genom. 2003, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Nag, D.K.; Tikhonenko, I.; Soga, I.; Koonce, M.P. Disruption of four kinesin genes in Dictyostelium. BMC Cell Biol. 2008, 9, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klopfenstein, D.R.; Holleran, E.A.; Vale, R.D. Kinesin motors and microtubule-based organelle transport in Dictyostelium discoideum. J. Muscle Res. Cell Motil. 2002, 23, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Röhlk, C.; Rohlfs, M.; Leier, S.; Schliwa, M.; Liu, X.; Parsch, J.; Woehlke, G. Properties of the kinesin-1 motor DdKif3 from Dictyostelium discoideum. Eur. J. Cell Biol. 2008, 87, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Iwai, S.; Ishiji, A.; Mabuchi, I.; Sutoh, K. A novel actin-bundling kinesin-related protein from Dictyostelium discoideum. J. Biol. Chem. 2004, 279, 4696–4704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kösem, S.; Ökten, Z.; Ho, T.-H.; Trommler, G.; Koonce, M.P.; Samereier, M.; Müller-Taubenberger, A. A non-mitotic CENP-E homolog in Dictyostelium discoideum with slow motor activity. Biochem. Biophys. Res. Commun. 2013, 431, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Odell, J.; Sikirzhytski, V.; Tikhonenko, I.; Cobani, S.; Khodjakov, A.; Koonce, M. Force balances between interphase centrosomes, as revealed by laser ablation. Mol. Biol. Cell 2019, 30, 1705–1715. [Google Scholar] [CrossRef]
- Tikhonenko, I.; Magidson, V.; Gräf, R.; Khodjakov, A.; Koonce, M.P. A kinesin-mediated mechanism that couples centrosomes to nuclei. Cell Mol. Life Sci. 2013, 70, 1285–1296. [Google Scholar] [CrossRef] [Green Version]
- Tikhonenko, I.; Nag, D.K.; Robinson, D.N.; Koonce, M.P. Microtubule-nucleus interactions in Dictyostelium discoideum mediated by central motor kinesins. Eukaryot. Cell 2009, 8, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Lakshmikanth, G.S.; Warrick, H.M.; Spudich, J.A. A mitotic kinesin-like protein required for normal karyokinesis, myosin localization to the furrow, and cytokinesis in Dictyostelium. Proc. Natl. Acad. Sci. USA 2004, 101, 16519–16524. [Google Scholar] [CrossRef] [Green Version]
- Iwai, S.; Suyama, E.; Adachi, H.; Sutoh, K. Characterization of a C-terminal-type kinesin-related protein from Dictyostelium discoideum. FEBS Lett. 2000, 475, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, S.M.; Akhmanova, A. Cell and molecular biology of microtubule plus end tracking proteins: End binding proteins and their partners. Int. Rev. Cell Mol. Biol. 2010, 285, 1–74. [Google Scholar]
- Bringmann, H.; Skiniotis, G.; Spilker, A.; Kandels-Lewis, S.; Vernos, I.; Surrey, T. A kinesin-like motor inhibits microtubule dynamic instability. Science 2004, 303, 1519. [Google Scholar] [CrossRef] [Green Version]
- Muhia, M.; Thies, E.; Labonté, D.; Ghiretti, A.E.; Gromova, K.V.; Xompero, F.; Lappe-Siefke, C.; Hermans-Borgmeyer, I.; Kuhl, D.; Schweizer, M.; et al. The kinesin KIF21b regulates microtubule dynamics and is essential for neuronal morphology, synapse function, and learning and memory. Cell Rep. 2016, 15, 968–977. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, S.; Hazelbaker, M.; Yount, L.A.; Walczak, E.C. Emerging insights into the function of Kinesin-8 proteins in microtubule length regulation. Biomolecules 2018, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, R.; Ti, S.-C.; Tan, L.; Darst, S.A.; Kapoor, T.M. Marking and measuring single microtubules by PRC1 and Kinesin-4. Cell 2013, 154, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Van Riel, W.E.; Rai, A.; Bianchi, S.; Katrukha, E.A.; Liu, Q.; Heck, A.J.R.; Hoogenraad, C.C.; Steinmetz, M.O.; Kapitein, L.C.; Akhmanova, A. Kinesin-4 KIF21b is a potent microtubule pausing factor. ELife 2017, 6, e24746. [Google Scholar] [CrossRef]
- Walczak, C.E.; Gayek, S.; Ohi, R. Microtubule-depolymerizing kinesins. Ann. Rev. Cell Develop. Biol. 2013, 29, 417–441. [Google Scholar] [CrossRef]
- Leo, M.; Santino, D.; Tikhonenko, I.; Magidson, V.; Khodjakov, A.; Koonce, M.P. Rules of engagement: Centrosome-nuclear connections in a closed mitotic system. Biol. Open 2012, 1, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Ems-McClung, S.C.; Walczak, C.E. Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. Semin. Cell Dev. Biol. 2010, 21, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Vicente, J.J.; Wordeman, L. Mitosis, microtubule dynamics and the evolution of kinesins. Exp. Cell Res. 2015, 334, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.W.; Sakowicz, R.; Goldstein, L.S.B.; Cleveland, D.W. CENP-E is a plus end–directed kinetochore motor required for metaphase chromosome alignment. Cell 1997, 91, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Mann, B.J.; Wadsworth, P. Kinesin-5 regulation and function in mitosis. Trends Cell Biol. 2019, 29, 66–79. [Google Scholar] [CrossRef]
- Hornick, J.E.; Karanjeet, K.; Collins, E.S.; Hinchcliffe, E.H. Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone. Semin. Cell Dev. Biol. 2010, 21, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Neujahr, R.; Heizer, C.; Gerisch, G. Myosin II-independent processes in mitotic cells of dictyostelium discoideum: Redistribution of the nuclei, re-arrangement of the actin system and formation of the cleavage furrow. J. Cell Sci. 1997, 110, 123. [Google Scholar]
- Zang, J.-H.; Cavet, G.; Sabry, J.H.; Wagner, P.; Moores, S.L.; Spudich, J.A. On the role of myosin-II in cytokinesis: Division of Dictyostelium cells under adhesive and nonadhesive conditions. Mol. Biol. Cell 1997, 8, 2617–2629. [Google Scholar] [CrossRef] [Green Version]
- Aist, J.R.; Bayles, C.J.; Tao, W.; Berns, M.W. Direct experimental evidence for the existence, structural basis, and function of astral forces during anaphase B in vivo. J. Cell Sci. 1991, 100, 279. [Google Scholar] [PubMed]
- Tikhonenko, I.; Irizarry, K.; Khodjakov, A.; Koonce, M.P. Organization of microtubule assemblies in Dictyostelium synctia depends on the microtubule crosslinker, Ase1. Cell Mol. Life Sci. 2016, 73, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Mountain, V.; Simerly, C.; Howard, L.; Ando, A.; Schatten, G.; Compton, D.A. The kinesin-related protein, HSET, opposes the activity of EG5 and cross-links microtubules in the mammalian mitotic spindle. J. Cell Biol. 1999, 147, 351–366. [Google Scholar] [CrossRef] [Green Version]
- She, Z.-Y.; Yang, W.-X. Molecular mechanisms of Kinesin-14 motors in spindle assembly and chromosome segregation. J. Cell Sci. 2017, 130, 2097. [Google Scholar] [CrossRef] [Green Version]
- Sekine, R.; Kawata, T.; Muramoto, T. CRISPR/CAS9 mediated targeting of multiple genes in Dictyostelium. Sci. Rep. 2018, 8, 8471. [Google Scholar] [CrossRef]
- Kollmar, M. Thirteen is enough: The myosins of Dictyostelium discoideum and their light chains. BMC Genom. 2006, 7, 183. [Google Scholar] [CrossRef] [Green Version]
- Moen, R.J.; Johnsrud, D.O.; Thomas, D.D.; Titus, M.A. Characterization of a myosin VII MyTH/FERM domain. J. Mol. Biol. 2011, 413, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.L.; Sokac, A.M.; Berg, J.S.; Cheney, R.E.; Bement, W.M. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 2004, 431, 325–329. [Google Scholar] [CrossRef]
Dd Name | Family | In Vivo Rate | Primary Phenotype | Refs |
---|---|---|---|---|
DhcA | Cytoplasmic dynein | 1.0 μm/s (motor domain) | Essential gene—interphase and mitotic functions | [12,13] |
Kif1 | Kinesin-3 | 2.6 μm/s | KO—90% decrease in MT plus-end-directed organelle motility | [3] |
Kif3 | Kinesin-1 | 2.0 μm/s | Essential gene—probably an organelle transporter | [22,23] |
Kif5 | Kinesin-1 | nd | KO—no obvious phenotype, but motor binds to actin | [24] |
Kif11 | Kinesin-7 | 0.038 μm/s | KO—no obvious phenotype, motor localizes to cytoplasmic MTs, enriched near plus-ends | [21,25] |
Kif8 | Kinesin-4 | 1.6 μm/s | KO—MTs appear longer but no impact on growth or development | [21,26] |
Kif10 | Kinesin-8 | 0.17 μm/s (motor+ domain) | KO—no obvious phenotype | [21] |
Kif9 | Novel Kin-I | MT depolymerize | KO—promotes centrosome detachment from nucleus, impairs mitotic entry/spindle assembly | [27,28] |
Kif6 | Kinesin-13 | nd | Essential gene—RNAi knockdowns reveal chromosome attachment and spindle defects | [28] |
Kif4 | Kinesin-7 | nd | Slow growth in null cells—spindle/chromosome defects when coupled with dynein perturbation | [21] |
Kif13 | Kinesin-5 | nd | KO—spindles prematurely slide apart during anaphase | [10] |
Kif12 | Kinesin-6 | nd | KO—cells unable to complete cytokinesis in suspension | [29] |
Kif2 | Kinesin-14 | nd | KO—no vegetative cell defects. Developmentally regulated | [19] |
Kif7 | Kinesin-1 | 0.14 μm/s (motor+ domain) | KO—no vegetative cell defects. Developmentally regulated | [30] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koonce, M.P. 13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in Dictyostelium. Cells 2020, 9, 528. https://doi.org/10.3390/cells9030528
Koonce MP. 13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in Dictyostelium. Cells. 2020; 9(3):528. https://doi.org/10.3390/cells9030528
Chicago/Turabian StyleKoonce, Michael P. 2020. "13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in Dictyostelium" Cells 9, no. 3: 528. https://doi.org/10.3390/cells9030528
APA StyleKoonce, M. P. (2020). 13 Plus 1: A 30-Year Perspective on Microtubule-Based Motility in Dictyostelium. Cells, 9(3), 528. https://doi.org/10.3390/cells9030528